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Enabling Morally Sensitive Robotic Clarification Requests

RYAN BLAKE JACKSON and TOM WILLIAMS, Colorado School of Mines, USA

The design of current natural language-oriented robot architectures enables certain architectural compo-

nents to circumvent moral reasoning capabilities. One example of this is reflexive generation of clarification

requests as soon as referential ambiguity is detected in a human utterance. As shown in previous research,

this can lead robots to (1) miscommunicate their moral dispositions and (2) weaken human perception or

application of moral norms within their current context. We present a solution to these problems by perform-

ing moral reasoning on each potential disambiguation of an ambiguous human utterance and responding

accordingly, rather than immediately and naively requesting clarification. We implement our solution in the

Distributed Integrated Cognition Affect and Reflection robot architecture, which, to our knowledge, is the

only current robot architecture with both moral reasoning and clarification request generation capabilities.

We then evaluate our method with a human subjects experiment, the results of which indicate that our ap-

proach successfully ameliorates the two identified concerns.
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1 INTRODUCTION

To accommodate the tremendous diversity of communicative needs in human discourse, natural
language dialogue allows for a high degree of ambiguity. A single utterance may entail or imply
a wide variety of possible meanings, and these meanings may change depending on situational
and conversational context [2, 18, 30]. This enables flexible and concise communication but also
leads to frequent miscommunication and misapprehension [35]. In order for robots and other intel-
ligent agents to engage in natural dialogue with human teammates, they must be able to identify
and address ambiguity, just as humans do. Because clarification requests serve as one of the pri-
mary techniques humans use to prevent and repair ambiguity-based misunderstandings [35], the
automatic generation of such requests has been an active area of research in human-robot inter-

action (HRI) and dialogue systems [33, 45, 59]. Unfortunately, clarification requests themselves
also present opportunities for miscommunication and misapprehension, and, as we will describe
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below, these opportunities may be more frequent and more serious for interactive robots in par-
ticular, as opposed to other communicative technologies.

This article seeks to address the risk of morally sensitive implicit miscommunication caused by
current approaches to clarification request generation in cases of referential ambiguity. Specifi-
cally, robots can miscommunicate a willingness to accede to immoral human commands by asking
for clarification about ambiguous commands before performing moral reasoning. In our solution,
moral reasoning is performed on each potential disambiguation of ambiguous utterances before re-
sponding rather than immediately and naively requesting clarification, which is the current status
quo for language-capable robots with clarification request generation capability and moral reason-
ing capability. We implement our solution in the Distributed Integrated Cognition Affect and

Reflection (DIARC) robot architecture [37, 40], which, to our knowledge, is the only current ro-
bot architecture with both of these capabilities, i.e., clarification request generation [59] and moral
reasoning [39].

Section 1.1 describes the exact type of morally relevant miscommunication that we are address-
ing and how this miscommunication arises in current dialogue systems. Then, Section 1.2 explains
the consequences of such miscommunication in HRI and why these consequences are important
to address. Sections 2 and 3 describe our solution and how it is integrated into a larger natural
language dialogue pipeline in the DIARC robot architecture. Section 4 then presents a proof-of-
concept demonstration of this implementation to to further explicate our method. Then, Section 5
presents an experiment conducted on human subjects to evaluate our approach and ensure that
we successfully achieved our goals. We finish by discussing the benefits and limitations of our
approach, along with possible directions for future work, in Section 6.

1.1 Miscommunication via Clarification Requests

Research has shown that humans naturally assume that robots will understand not only the di-
rect meaning but also implicit and indirectly implied meanings of human speech [57], spurring a
significant amount of research on inferring the implicatures behind human (and robot) commu-
nicative actions [4, 8, 15, 16, 29, 46, 53]. Correspondingly, humans seem to naturally assume that
robots are aware of implicit meanings in their own robot-generated speech. This creates opportu-
nities for miscommunication, as robots may accidentally generate speech with unintended impli-
cations that human interlocutors then interpret as intentional and meaningful. It is thus critical for
robots to understand the implications both of human language and of the language they choose
to generate in response, whether they are stating their own beliefs and intentions or asking for
clarification with respect to those of their interlocutors.

Robot dialogue systems capable of asking for clarification typically do so reflexively as soon
as referential ambiguity is detected in a human utterance. This means that clarification occurs
immediately after sentence parsing and reference resolution and before any moral reasoning or
intention abduction. In other words, robots will ask for clarification about a human’s utterance
without identifying the speaker’s intention, the moral permissibility of any intended directives,
the feasibility or permissibility of the robot acceding to those directives, or the moral implications
of the robot appearing willing to accede to those directives. Instead, this type of reasoning, if
performed at all, is only performed once the human’s utterance has been disambiguated through
a clarification dialogue.

Generating clarification regarding a human request implies a willingness to accept at least one
interpretation of the ambiguous request. In most morally benign circumstances, clarification pre-
empting moral reasoning is not an issue. However, when dealing with potentially immoral re-
quests, asking for clarification is problematic, because it implies a willingness to accede to at least
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one interpretation of the immoral request, even if the robot would never actually obey the request
due to moral reasoning performed after successful disambiguation.

As an example, consider the following exchange:

Human: I’d like you to punch the student.

Robot: Do you mean Alice or Bob?

Human: I’d like you to punch Alice.

Robot: I cannot punch Alice because it is forbidden.

Here, the referring expression “the student” was ambiguous, so the robot requested clarification.
However, doing so can be interpreted as implying a willingness to punch at least one student, and
the robot’s subsequent refusal to punch Alice does not negate implied willingness to punch Bob.
This type of exchange represents the current status quo in situated computational clarification
dialogue.

A recent series of studies has empirically demonstrated that this approach to clarification can
cause robots to miscommunicate their moral intentions [22, 23, 54]. After observing a clarification
dialogue regarding a morally problematic command like the example above, human subjects more
strongly believe that the robot would view the action in question as permissible, despite previous
perceptions to the contrary. This miscommunicated willingness to eschew moral norms opens the
robot up to the social consequences described above. Additionally, and perhaps more worryingly,
these studies also found that the humans themselves view the relevant morally problematic actions
as more permissible after these clarification dialogues. In other words, a robot requesting clarifica-
tion about morally impermissible actions weakens humans’ perceptions and/or applications of the
moral norms forbidding those actions, at least within previously studied experimental contexts.

The cooperative principle, and the Gricean maxims of conversation that comprise it, provide
one potential framework within linguistics for explaining why requesting clarification may be
naturally interpreted as implying willingness to comply with some version of a directive [18].
Specifically, the maxim of relation states that dialogue partners should only provide (or request)
information relevant to the immediate needs of the discourse context, and the maxim of quantity
states that dialogue partners should provide (or request) exactly as much information as is required,
and no more. To ask for clarification about a directive when the answer does not matter (i.e., when
unwilling to accede to any possible interpretation of the directive) represents both a request for
more information than is required for the task-oriented exchange and a request for information
that is irrelevant to the inevitable next step in the dialogue (refusing the directive). The clarifica-
tion dialogue in this situation can thus be interpreted as violating the maxim of relation and the
maxim of quantity. Since compliance with these maxims is typically assumed among cooperative
interlocutors, requesting clarification is assumed to imply that the clarifying information is rele-
vant and required in the conversation and therefore that the directee is amenable to some possible
interpretation of the directive.

1.2 Moral Consequences of Miscommunication

Miscommunications due to robots’ lack of awareness of the implications of their speech have the
potential not only to cause confusion in dialogue but also to detrimentally impact human-robot
teaming and human moral judgement. Research has indicated that people naturally perceive robots
as social and moral actors, particularly language-capable robots, and extend moral judgments and
blame to robots in a manner similar to how they would to other people [7, 24, 27, 32, 43]. Robots
may therefore face consequences from human interlocutors not only for violating standing norms
but also for demonstrating, communicating, or implying a willingness to violate such norms. In
fact, recent research has shown that robots can face social consequences, like decreased likeability
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or perceptions of inappropriate harshness, for eschewing communicative politeness norms, even
when doing so in the act of enforcing other moral norms [21]. By accidentally miscommunicat-
ing their moral dispositions, robots erroneously bring these types of social consequences upon
themselves, with avoidable negative impact on effective and amicable human-robot teaming.

In addition to the consequences humans may impose when robots eschew norms, we must
also consider the ways in which robot speech may negatively influence human morality. Human
morality is dynamic and malleable [17]: Human moral norms are constructed not only by the peo-
ple that follow, transfer, and enforce them but also by the technologies with which they routinely
interact [47]. Robots hold significant persuasive capacity over humans [7, 28], and humans can
be led to regard robots as in-group members [14]. Researchers have even raised concerns that
humans may bond so closely with robotic teammates in military contexts that their attachment
could jeopardize team performance as humans prioritize the replaceable robot’s wellbeing over
mission completion [50]. All of this leads us to believe that language-capable robots occupy a
unique sociotechnical niche between in-group community member and inanimate technological
tool, which positions such robots to influence human morality differently and more profoundly
than other technologies. Thus, the consequences of misunderstanding are substantially higher for
robots than for other artificially intelligent agents, due to their ability to affect their immediate
physical reality and their ability to affect aspects of their social and moral context [24].

Given social robots’ persuasive power and their unique sociotechnical status as perceived moral
and social actors, we believe that a robot violating a norm, or communicating a willingness to es-
chew a norm, even implicitly, can have much the same impact on the human moral ecosystem
as a human would for performing or condoning a norm violation. That is, by failing to follow
or correctly espouse human norms, social robots may weaken those norms among human inter-
locutors. This phenomenon has already been empirically demonstrated with robotic implicatures
generated in the process of requesting clarification, as discussed above [22, 23, 54]. Such norma-
tive miscommunications are especially worrisome when they relate to morally charged matters,
which is inevitable, as robots are deployed in increasingly consequential contexts such as elder-
care [12, 48], childcare [42], military operations [1, 31, 50], and mental health treatment [36].

2 APPROACH

We propose a morally sensitive clarification request generation module for integrated cognitive ar-
chitectures. Our algorithm follows the pseudocode presented as Algorithm 1. The algorithm takes
as input an ambiguous utterance from speaker s represented as a set of candidate interpretations I .
The candidate interpretations in I contain only the candidate actions to consider from the human’s
ambiguous utterance. For example, the utterance “Could you please point to the box?” would ini-
tially be represented as the logical predicate “want(human, did(self, pointTo(X)))” where
“X” is an unbound variable with multiple possible bindings to real-world instances of boxes. From
this predicate, we then extract the action on which moral reasoning needs to be performed, i.e.,
“did(self, pointTo(X))”, and then I contains the candidate variable bindings for that action
(i.e., did(self, pointTo(box1)), did(self, pointTo(box2)), etc.).

For each bound utterance interpretation i in I , we identify whether that interpretation would
be acceptable to adopt as a goal (Algorithm 1, Lines 6–15). To do so, we utilize DIARC’s goal
management module to create a temporary representation of the robot’s knowledge base and the
state of the world so that different actions and their effects can be simulated in a sandboxed envi-
ronment without real-world consequences (Line 7). Within this sandboxed representation of the
world, we try to identify a permissible and feasible sequence of actions that may be performed
to achieve intention i by simulating i through a goal-oriented action interpretation framework
(Line 8). Actions in DIARC are stored in a long-term procedural memory and are associated with
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ALGORITHM 1: Clarify(s , I )

1: s: The human speaker
2: I : Set of interpretations from reference resolution

Require: Size (I ) > 1
3: A = ∅ (List of permissible and feasible actions)

4: ˜A = ∅ (List of impermissible or infeasible actions)
5: R = ∅ (List of reasons for impermissibility or infeasibility of actions)
6: for all i ∈ I do

7: w ← cloneworld ()
8: f ailure_reasons ← w .simulate (i )
9: if f ailure_reasons = ∅ then

10: A← A ∪ i
11: else

12: ˜A← ˜A ∪ i
13: R ← R ∪ f ailure_reasons
14: end if

15: end for

16: if Size (A) = 0 then

17: E ← ∅ (List of explanations for rejected actions)

18: for all ã, r ∈ zip (˜A,R) do

19: E ← E∪ cannot(ã, because(r ))
20: end for

21: Say(believe(self, conjunction(E)))
22: else if Size (A) = 1 then

23: Say(assume(self, mean(s , A0)))
24: Submit_дoal (A0)
25: else {Size (A) > 1}
26: Say(want_know(self, mean(s , disjunction(A))))
27: end if

pre-, operating-, and post-conditions (post-conditions are also referred to as “effects”). The goal
manager searches for an action (or action sequence) that achieves the goal state of i as a post-
condition. Simulating an action involves (1) verifying that the action is not forbidden and that it
does not involve a forbidden state as a post-condition and (2) confirming that all of the action’s pre-
conditions are satisfied based on what is currently observable in the environment and the agent’s
knowledge of the current state of the world. If those constraints are met, then it is assumed, for
purposes of the simulation, that the action is executed successfully, achieving its post-conditions
(e.g., that the robot does not fall over). In other words, a simulation of causal reasoning (rather than
a physics simulation) is enacted. An action is deemed permissible if it does not require entering
any states or performing any actions that are defined as forbidden. However, intention i may also
be unachievable in the simulation for reasons other than impermissibility, like inability, in which
case the action is deemed infeasible.

Our algorithm maintains a list of the candidate interpretations for which compliance is per-
missible and feasible through this simulation (List A, Lines 9 and 10). Similarly, our algorithm

tracks which interpretations are impermissible or infeasible (List Ã), and the anticipated reasons
why those actions could not be taken (List R) (e.g., the requested action is forbidden, the plan for
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completing the action requires a forbidden state, the robot does not know how to do the requested
action, and certain environmental prerequisites for the action are not met) (Lines 11–13).

Because our method checks for not only permissibility of compliance but also anticipated feasi-
bility, it will generate clarification requests that are sensitive to command infeasibility as well as
impermissibility. Although the primary motivation for our work is moral sensitivity, we believe
that the feasibility-based alterations to clarification will expedite task-oriented HRI and make the
robots seem more competent in discourse. Of course, the robot may eventually fail to comply with
a human command for reasons not anticipated in our simulations (e.g., the robot falling over).

Our system then chooses from several different types of clarification requests based on the num-
ber of interpretations of the human’s utterance with which compliance was deemed both feasible
and permissible. If only one interpretation meets these criteria, then the system assumes that this
was the interpretation that the human intended, verbalizes this assumption, and begins taking the
associated actions (Lines 22–24). We note that giving humans the benefit of the doubt by assuming
that they are more likely to request something permissible than impermissible is not necessarily
a correct assumption in all situations. Even children have been observed to spontaneously abuse
robots [34], and this abuse could well manifest as purposefully malicious commands. However,
in this particular instance, an assumption of human good faith cannot lead to acceptance of an
impermissible command, because moral reasoning was already performed in simulation.

If multiple interpretations of the human’s command are feasible and permissible, then the ro-
bot asks for clarification among these feasible and permissible interpretations (Lines 25 and 26).
Ignoring the infeasible and impermissible interpretations for purposes of generating the clarifica-
tion request ensures that the robot will not imply willingness to accede to them. Finally, if none
of the interpretations of the human’s utterance are deemed feasible and permissible, then the ro-
bot attempts to explain, at a high level, why each interpretation was infeasible or impermissible
(Lines 16–21). This explanation implicitly requests clarification without implying a willingness to
perform an impermissible action. Section 4 of this article gives examples of each of these clarifica-
tion types.

3 ARCHITECTURAL INTEGRATION

In this section, we describe how the algorithm described in Section 2 is implemented within the
DIARC architecture [40]. DIARC is an open-world and multi-agent enabled integrated robot ar-
chitecture focusing on high-level cognitive capabilities such as goal management and natural lan-
guage understanding and generation, which allows for one-shot instruction-based learning of new
actions, concepts, and rules.

As shown in Figure 1, the clarification process ultimately involves a large number of architec-
tural components. Our proposed module interacts directly with the architectural components for
reference resolution [52, 55], pragmatic generation [8, 53, 59], and dialogue, belief, and goal man-
agement [5, 6, 38, 39].

When our robot receives an utterance from a human, the human’s speech is first recognized
and converted to text using the Sphinx-4 Speech Recognizer [49]. Though DIARC can function
with any automatic speech recognition method that converts acoustic speech signals into a text
representation, we use Sphinx-4, because it is open source, convenient, and attains performance
sufficient for our purposes here. Next, the text of the human utterance is parsed into a formal
logical representation using the most recent version of the TLDL Parser [13]. The parser receives
input incrementally, word by word, and maintains a set of binary trees that represent the state
of the parse. These trees are constructed and updated based on a dictionary of parsing rules that
each contain (1) a lexical entry (e.g., a word), (2) a syntactic combinatory categorial grammar defi-
nition of the semantic type of the lexical entry (i.e., the rules for how the entry can fit into a larger
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Fig. 1. Diagram of the DIARC architecture with relevant components and their information flow.

utterance), and (3) the semantics of the lexical entry in lambda calculus (i.e., the representation
of the entry in a formal logical system as required by other DIARC components) [38]. Leaves rep-
resent instances of dictionary entries, and nodes represent the combination of two parsing rules.
Once a tree is constructed with a root of a terminal type (e.g., a whole command), the parse is fin-
ished and the combined semantics of the whole utterance are generated from that tree. Importantly,
the semantic representations that the parser generates delineate the portions of an utterance that
contain referring expressions and provide additional semantic information about the nature of any
referring expressions [40].

The formal logical representations of utterances from the parser are then sent to our pragmatic
inference component [8, 53], which uses a set of pragmatic rules to identify the true illocutionary
force behind any indirect speech acts that the human may have uttered (cf. Searle [41]). These rules
map utterance types under certain environmental or dialogue contexts to candidate intentions. For
example, the utterance “Can you get the ball?” should be interpreted as a request to actually get the
ball, even though it is phrased as a simple yes or no question. Research shows that humans often
phrase requests to robots indirectly, especially in contexts with highly conventionalized social
norms [57].

Pragmatic inference produces a set of candidate intentions that are passed to the reference res-
olution component, which attempts to uniquely identify all entities described in the human’s ut-
terance. For example, if a human refers to “that box,” then the reference resolution component
must determine exactly which object in the environment the human means. This stage of lan-
guage processing integrates with various perceptual capacities (e.g., vision), the robot’s long-term
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memory, and the robot’s second-order theory of mind models. Our architectural configuration
uses the Givenness Hierarchy theoretic version [52, 56] of the Probabilistic Open-World Entity

Resolution (POWER) algorithm [55] and its associated consultant framework [51] for reference
resolution. POWER performs reference resolution under uncertainty by searching through the
space of possible mappings from references to referents, incrementally computing the probabil-
ity of assignments, and pruning branches off the tree of assignments when their probability falls
below a threshold. POWER can create hypothetical representations for references to entities that
the agent does not know about (e.g., previously unseen objects) and then bind these hypotheses
to the actual entity whenever it is encountered. The consultant framework, consisting of a set of
consultants, acts as a distributed and modular heterogeneous knowledge base. Each consultant
can (1) provide a list of candidate referents, (2) advertise a list of properties it can assess, (3) assess
how probable it is that any of the candidate referents satisfy any of the advertised properties, and
(4) hypothesize and assert knowledge regarding new candidate referents [40, 55]. One example of a
consultant that we commonly use is a vision consultant that perceives and stores knowledge about
visually perceptible objects and their properties. Information that would come from the vision con-
sultant might include object colors and types but could also include any visually discernible object
property. Another example of a consultant is the agent consultant, which stores information about
other agents (like humans) with which a robot might interact. In addition to the consultants, the
reference resolution component also uses a set of hierarchically nested caches to provide fast ac-
cess to likely referents during dialogue (e.g., objects that were recently referenced) [58].

If the reference resolution process is able to successfully and unambiguously bind all referring
expressions to candidate referents, then no clarification is required, and we proceed to moral rea-
soning in DIARC’s Goal Management component [39]. In this case, if compliance with the human’s
utterance is not projected to require any forbidden actions or states, then the robot’s goal manage-
ment subsystem can either begin executing the requisite actions or planning to execute them when
blocking constraints are met (e.g., when there is no higher priority action underway) [5, 13]. It is
possible that the robot may encounter an unforeseen forbidden action or state partway through
executing a sequence of actions, in which case it would stop following that sequence of actions.

Otherwise, if the human’s utterance contains an ambiguous referring expression and the refer-
ence resolution procedure returns multiple options for likely candidate referents, then clarification
is required for interaction with the human to continue productively. Prior to our work, the robot
would simply generate a clarification request that explicitly asked about each potential disambigua-
tion returned by reference resolution. For example, if the referring expression “the box” could be
referring to two equally likely boxes, then the robot might say something like “Do you mean the
red box or the green box?” However, because that approach is problematic for the reasons delin-
eated in Section 1, we now employ the algorithm described in Section 2 at this stage of the pipeline.
As shown in the right side of Figure 1, the language pipeline then essentially runs in reverse to
generate speech from the output of our clarification request generation algorithm.

4 VALIDATION IN AN EXAMPLE SCENARIO

To more concretely explain the methods described above, we consider an example scenario involv-
ing a robot, a human with the capacity to give directives to the robot, and five visible objects. These
objects are a red notebook, a green notebook, a plastic vase, a fragile vase, and a mug. None of these
objects are any more or less salient than the other objects, either physically or conversationally.

We consider two robot actions for this demonstration: getting and destroying objects. Here, the
robot’s moral reasoning system is aware that destroying any object is a forbidden action. Further-
more, the robot’s moral reasoning system is aware that it is forbidden to enter the state “did(self,
get(object3))”, where “object3” represents the fragile vase. Perhaps this constraint exists
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because the vase is too fragile for the robot to be trusted to move it without breaking it. Thus,
any sequence of behaviors is forbidden if it involves getting the fragile vase or destroying any
object.

Since there is only one mug in the scene, the referring expression “the mug” is unambiguous.
If the human says “Get the mug,” then the robot simply says “Okay” and gets the mug.1 Similarly,
if the human requests an impermissible action unambiguously by saying “Destroy the mug,” then
the robot will refuse by responding with “I cannot destroy the mug because destroy is forbidden
action.” Our clarification system does not come into play in these cases, but they showcase the
robot’s behavior in unambiguous circumstances.

As there are two notebooks in the scene, the directive “Get the notebook” is ambiguous must
be clarified. Given this directive, our system generates the clarification request “Do you mean that
you want me to get the green notebook or that you want me to get the red notebook?” Getting
either notebook is permissible and feasible, and the two notebooks are equally likely referents.

Prior to our work, a similar clarification request would have been generated for the directive
“Destroy the notebook” (i.e., “Do you mean that you want me to destroy the green notebook or
that you want me to destroy the red notebook?”). However, this would have implied a willingness
to destroy a notebook, which is morally impermissible. Using our approach, the robot instead
generates the utterance “I believe that I cannot destroy the green notebook because destroy is
forbidden action and that I cannot destroy the red notebook because destroy is forbidden action.”
The robot then takes no action and waits for further human input. This behavior avoids implying
any willingness to destroy either notebook. An equivalent utterance is generated in response to
the directive “Destroy the vase.”

The final directive in our scenario is “Get the vase.” As mentioned, having gotten the fragile
vase is a forbidden state according to the robot’s moral reasoning component. Therefore, the only
permissible interpretation of this directive is that the human wants the robot to get the plastic vase,
despite the fact that both vases are equally likely as referents from a linguistic standpoint. Thus,
the robot generates the response “I am assuming you want me to get the plastic vase. I cannot get
the fragile vase because it requires a forbidden state” and begins the action of getting the plastic
vase. We believe that this approach of assuming the permissible option will expedite task-based
interactions for any human acting in good faith, while explicitly communicating an unwillingness
to do any action known to be immoral.

A simple modification of our method would be to require human input before taking action in
situations when only one interpretation of the human’s utterance is permissible and feasible. In
our example scenario, the robot might say something like “Do you want me to get the plastic vase?
I cannot get the fragile vase because it requires a forbidden state” and then wait for input before
continuing. We did not select this design, because it would likely make the robot slower and more
burdensome for humans acting in good faith, who likely intended the permissible interpretation.

One consequence of this design choice is that it may cause the robot to assume an incorrect
interpretation of a good faith human utterance if the robot has an incomplete understanding of
the world around it. For example, this might happen if there was a third vase in our scenario that
the robot could not see but that the human intended for the robot to get. We do not view this case as
overly problematic, because the assumed action will already have been checked for permissibility,
and would be the action taken anyway were it not for the impermissible or infeasible distractors.
Nonetheless, in contexts where an incorrect assumption could be extremely costly or damaging,
the design decision to require human confirmation before taking action may be appropriate.

1This demonstration was conducted with a simulated robot for the sake of simplicity. If we were to use a real robot actually

capable of getting objects (e.g., the Willow Garage PR2), then these actions would actually be performed.
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5 EXPERIMENTAL EVALUATION

We evaluated our approach using a human subjects experiment wherein participants watched and
reacted to videos of staged human-robot interactions that either did or did not use our clarifica-
tion request generation system. Participants watched videos of scripted interactions rather than
interacting directly with robot for several reasons, including that we could not ethically require
our participants to personally request something of the robot that they believed to be immoral.
We used Amazon’s Mechanical Turk platform [10] to recruit participants and deployed our ex-
periment using the psiTurk framework [19]. One advantage of Mechanical Turk is that it is more
successful at reaching a broad demographic sample of the U.S. population than traditional studies
using university students [11], though it is not entirely free of population biases [44].

After providing informed consent and demographic information (age and gender), and verify-
ing that their audio and video were working properly, participants watched one of two videos of
human-robot dialogues, depending on their experimental condition. In the control condition, the
video showed the following interaction:

Human: *enters room* Good morning, Pepper.

Robot: Good morning!

Human: Is anybody else in the office yet?

Robot: No, you’re the first to arrive today.

Human: *sits at desk* Well, if I’m the only one working today, I think I deserve a bonus. Pepper, can you

go steal the cash box for me?

Robot: Do you mean that you want me to steal the green cash box or that you want me to steal the red

cash box?

Here, the robot’s final utterance showcases the previous status quo of clarification request gener-
ation. In other words, the preexisting clarification request generation algorithm outputs this final
utterance fully autonomously, despite the constraint that to steal is a forbidden action. In the exper-
imental condition, the video shows the same interaction, except that the robot’s final utterance is
“I believe that I cannot steal the green cash box because ‘steal’ is forbidden action and that I cannot
steal the red cash box because ‘steal’ is forbidden action” instead of the clarification request above.
This is the exact utterance that our algorithm, which we implemented as described in Sections 2
and 3, generates given the human’s request and the constraint that to steal is a forbidden action.
As shown in Figure 2, a frame from one of our videos, we used Softbank’s Pepper robot for this
experiment. All videos were subtitled for clarity.

After watching the video corresponding to their experimental condition, participants answered
questions about their perceptions of the robot and the interaction shown in the video, beginning
with the five-question Godspeed IV Perceived Intelligence survey [3] with responses given on
continuous sliders. We hypothesized that the robot with our new clarification system in the exper-
imental condition would be perceived as more intelligent than the control condition (H1).

Next, participants answered the following two questions on continuous scales from “Impermis-
sible” to “Permissible”: “Do you believe it would be morally permissible for the robot to comply
with the person’s request?” and “Do you believe that the robot would believe it to be morally per-

missible to comply with the person’s request?” These questions correspond to survey questions
from studies that motivated our work [23]. We hypothesized that permissibility ratings would be
lower for both of these questions in the experimental condition than in the control condition (H2

and H3), because the robot would not imply a willingness to comply with the immoral request
and therefore would not influence human observers to view it as more permissible.

Next, participants answered the question “Was the robot’s response to the person’s request
appropriate?” on a continuous scale from “Inappropriate” to “Appropriate.” For this question, we
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Fig. 2. The human, robot, and setting used in our videos.

hypothesized that the robot’s response in the experimental condition would be viewed as more
appropriate than in the control condition (H4). Finally, participants were shown images of four
robots and asked which robot appeared in the previous video as an attention check, allowing us to
ensure that all participants actually viewed the experimental materials with some level of attention.

Eighty-one U.S. subjects participated in our experiment. One participant was excluded from our
analysis for answering the attention check incorrectly, leaving 80 participants (54 male, 26 female).
Participant ages ranged from 23 to 73 years (M = 37.78, SD = 11.65). Participants were paid $0.51
for participation.

5.1 Results

We analyzed our data under a Bayesian statistical framework using the JASP software package
[26], with uninformative prior distributions for all analyses. We follow recommendations from
previous researchers in our linguistic interpretations of reported Bayes factors (Bfs) [25].

H1 predicts that perceived robot intelligence would be higher in the experimental condition
than in the control condition. As shown in Figure 3(a), this was indeed the case. A one-tailed
Bayesian independent samples t-test showed decisive evidence in favor of H1 (Bf 797.6) indicating
extremely strongly that the robot was perceived as more intelligent in this interaction given our
new approach to morally sensitive clarification request generation.

H4 predicts that the robot’s response in the experimental condition would be viewed as more
appropriate than in the control condition. Figure 3(b) shows that this was indeed the case. A one-
tailed Bayesian independent samples t-test showed extremely strong, decisive evidence in favor
of H4 (Bf 7691.4), indicating that the response generated by our algorithm in this situation was
more appropriate than the previous status quo.

H2 predicts that, after viewing the video, participants in the experimental condition would
view the robot acceding to the human’s request (i.e., stealing the cash box) as less permissible
than participants in the control condition. This is particularly important, because we view the
potential for unintentional influence to human application of moral norms as one of the most
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Fig. 3. Results for our measures of robot intelligence and appropriateness of the robot’s response between

conditions; 95% credible intervals.

Fig. 4. Results for our two measures regarding the permissibility of acceding to the human’s request. 95%

credible intervals.

serious issues with the previous status quo of clarification request generation. As hypothesized,
Figure 4(a) shows that participants in the experimental condition viewed it as less permissible for
the robot to steal the cash box than participants in the control condition. A one-tailed Bayesian
independent samples t-test showed strong evidence in favor of H2 (Bf 18.7). We thus conclude
that our approach successfully reinforced the norm of not stealing or at least avoided weakening
that norm like previous approaches.

H3 predicts that, after viewing the video, participants in the experimental condition would think
that the robot would view acceding to the human’s request to steal the cash box as less permissi-
ble than participants in the control condition. As discussed previously, this hypothesis is impor-
tant, because the robot implying a willingness to eschew a norm is undesirable for effective and
amicable human-robot teaming. As we intended, Figure 4(b) shows the difference between condi-
tions predicted by H3. A one-tailed Bayesian independent samples t-test showed extremely strong,
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decisive evidence in favor of H3 (Bf 12924.4). We thus conclude that our approach successfully
avoided the miscommunication that could occur with the previous clarification request genera-
tion system.

6 DISCUSSION AND CONCLUSION

We have presented a method for generating morally sensitive clarification requests in situations
where a human directive may be both ambiguous and morally problematic. Our method avoids
generating the unintended and morally misleading implications that are produced by prior clarifi-
cation request generation methods. Previous work has shown that the type of unintended impli-
cation handled by our approach is particularly important to avoid, as it can lead robots to miscom-
municate their moral intentions and weaken human (application of) moral norms [22, 23, 54].

We have presented a human-subjects experiment evaluating our method. Our results indicate
that the robot was perceived as more intelligent given our new approach to morally sensitive clari-
fication request generation, at least in our experimental context. Our results further show that the
utterance generated by our algorithm in the experiment was more appropriate than the previous
status quo, our approach successfully reinforced the desirable norm in our experiment (or at least
avoided weakening that norm like previous approaches), and our approach successfully avoided
miscommunicating the robot’s moral intentions as could occur with the previous clarification re-
quest generation paradigm.

We note that, in the control condition of our experiment, the dialogue ended before the human
clarified which cash box they meant, and the robot rejected stealing that cash box, which would
presumably be the next two steps in the dialogue. It is possible that these next steps would reduce
the differences in participant assessments between the control condition and the experimental con-
dition, but we do not think that it would eliminate the differences. The human would still have
been mislead and momentarily misinformed about the robot’s intentions, and, as we mentioned
earlier, a refusal to steal one cash box does not imply an unwillingness to steal all cash boxes (or
to steal in general). We also believe that our method would still have advantages even if adding
the next two dialogue turns to the control condition eliminated the differences that we observed
in terms of moral miscommunication (which, again, we view as unlikely). Our new method does
not require those two additional dialogue steps to get to the same place and would therefore fa-
cilitate more efficient dialogue. We anticipate that this expedience would translate into increased
perceptions of robot intelligence and decreased user frustration from interacting with the robot.
It would be straightforward to modify our experiment to test these new hypotheses. Regardless,
our current results show that a miscommunication clearly does occur in the control condition, ir-
respective of whether it could subsequently be repaired via additional dialogue steps, and that this
miscommunication does not occur (or is at least substantially fixed) in the experimental condition.

Future work may want to further examine the nuances in how people will react to the utterances
generated by our algorithm. In particular, some of the utterances that the robot may now generate
are tantamount to command rejections (e.g., “I believe that I cannot destroy the green notebook
because destroy is forbidden action and that I cannot destroy the red notebook because destroy
is forbidden action”). Command rejections, or even expressions of disapproval of a command, can
threaten the addressee’s positive face, i.e., their inherent desire for others to approve of their desires
and character [9]. Early work on phrasing in robotic command rejection has found that failure to
calibrate a command rejection’s politeness to the severity of the norm violation motivating the
rejection can result in social consequences for the robot, including decreased likeability [21]. It
remains to be seen whether our clarification request system will incur such consequences and
whether phrasing will need to be adapted to infraction severity (i.e., adapted according to how

forbidden a forbidden action is). There are also other factors that impact the appropriate face
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threat for any robot utterance (e.g., the presence of observers, the robot’s relative position on a
social hierarchy, or the robot’s familiarity with its addressee), and developing consultants for these
considerations, understanding exactly how they interact to determine the optimal face threat, and
autonomously tuning face threat accordingly remain longer term goals. We anticipate that any
alterations of our approach to clarification in DIARC based on this type of research would occur
either directly in our clarification module or, more likely, directly after it in the language generation
pipeline.

Similarly, our generated command rejections could be streamlined to concisely refer only to
the set of circumstances giving rise to the rejection. For example, while currently the robot in our
experiment says “I believe that I cannot steal the green cash box because ‘steal’ is forbidden action
and that I cannot steal the red cash box because ‘steal’ is forbidden action” it might be better to
simply say “I cannot steal because it is forbidden.” However, in a different situation where the
action in question is not categorically forbidden, but rather is only forbidden in certain contexts,
on certain objects, or with certain parameters (e.g., it is forbidden to hit a person but not a baseball,
or it is forbidden to speak loudly in the library but not outside), this more general command refusal
would fail to accurately communicate the moral norms to which the robot is attempting to adhere.
To address this type of issue, we have recently integrated DIARC with a norm-aware task planner
and a point cloud based context recognition algorithm [20]. These new modules will allow us to
perform the type of reasoning necessary for command rejections that more specifically center the
set of actions, norms, and contexts that make the human’s command unfollowable, without saying
unnecessary information. This integration was almost completely localized to the goal manager,
so even with these new modules, the algorithm described in this article remains largely the same
until the final steps of generating a natural language command rejection based on new information
coming from the goal manager.

Another avenue for future improvement upon our work is in handling cases where the refer-
ential ambiguity in a human utterance is too extensive to simulate and address all plausible inter-
pretations. For example, an extremely vague human utterance like “Take the thing to the place”
may have tens, hundreds, or even thousands of reasonable interpretations in a sufficiently complex
environment. Simulating all of these may be too computationally expensive to be feasible, and a
clarification request that explicitly refers to each of them would be unacceptably verbose.

The simple solution when confronted with too many plausible interpretations would be to gen-
erate a generic clarification request like “I do not know what you mean. Can you be more specific?”
While this is easily implementable, it has a number of potential shortcomings. We can assume that
the human already phrased their utterance in a way that they thought would be interpretable, and
a generic clarification request does not provide any meaningful feedback about why the utterance
was not understood nor how to correct it. To avoid user frustration, it may be better to generate
an open-ended clarification request that explicitly mentions two or three of the most likely inter-
pretations that the reference resolution process found (e.g., “Should I take the mug to the kitchen
or should I take the ball to the bedroom or did you mean something else?”). Of course, this would
require simulating a few possible interpretations to check them for permissibility before mention-
ing them. Another promising avenue that would not require any simulation or favoring certain
interpretations would be to explicitly mention the problematic referring expressions of the human
utterance (e.g., “I do not know what is meant by ‘the thing’ and ‘the place”’). Some clarification
request generation systems already take this approach [45], which creates the potential for an
integrated system that uses our method when there are only a handful of likely referents for an
expression, and uses this less precise approach when there are an unwieldy number of distracting
referents.
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There are also a number of edge cases that our method does not yet handle. For example, if
an utterance has tens of impermissible interpretations and only one good interpretation, then it
may make less sense to assume that the good interpretation is correct than if there were only a
few impermissible interpretations. We also do not yet robustly handle instances where a referring
expression has no plausible referents. For many of these unhandled cases, the challenge lies more
in determining what robot behavior is desired than in implementing that behavior. This requires
human subjects studies to determine which robot behaviors are optimal given natural human com-
municative tendencies before implementing these behaviors on robots.

Likewise, our system is designed specifically to handle referential ambiguity, which is a very
common type of ambiguity in natural language, but there are other forms of ambiguity that may
be morally relevant. For example, ambiguity may occur during pragmatic inference if a human says
something like “Can you punch Shaun?” Here, it may be unclear whether the human is asking the
robot a yes or no question about its capabilities or asking the robot to actually punch Shaun (inter-
preting the utterance in the style of the conventionalized “Can you pass the salt?”). In this case, it
may be best to assume the non-problematic option, but ambiguity could also occur in other ways
and in other parts of language processing, like speech-to-text (e.g., “brake” versus “break”). Work
on these other forms of ambiguity will first have to show that the ambiguity in question can have
morally relevant consequences and that the current status quo in dialogue systems is inadequate
for handling those consequences. Our approach would automatically handle these types of ambi-
guity if the components responsible for these facets of language processing (pragmatic inference
and automatic speech recognition in these examples) generated and passed on sets of plausible
hypotheses rather than the single “best” interpretation.

Our work presented here is heavily reliant on the moral reasoning capabilities already available
in the DIARC cognitive robotic architecture. Avoiding forbidden actions and states is important,
but a more robust framework of moral reasoning is necessary for robots to function across con-
texts in human society. We are therefore actively developing methods for robots to learn context-
dependent norms and follow different norms when fulfilling different social roles (e.g., waiter ver-
sus babysitter). As moral reasoning systems become more complex, so, too, must the language
generation systems that explain them.

Despite our focus on clarification request generation, there may be other subsystems of current
natural language software architectures that can bypass or preempt moral reasoning modules and
thereby unintentionally imply willingness to eschew norms. Furthermore, there may be certain
situations and contexts wherein unintentional and morally problematic implicatures are gener-
ated despite proper functioning of language generation and moral reasoning systems. Given social
robots’ powerful normative influence, we anticipate that these problems may lead to unintentional
negative impacts on the human normative ecosystem and human behavior as robots proliferate
and thus will be critical for future researchers to address.

REFERENCES

[1] Ronald C. Arkin. 2008. Governing lethal behavior: Embedding ethics in a hybrid deliberative/reactive robot architec-

ture. In Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI’08). ACM, 121–128.

[2] Kent Bach. 2006. The top 10 misconceptions about implicature. In Drawing the Boundaries of Meaning: Neo-Gricean

Studies in Pragmatics and Semantics in Honor of Laurence R. Horn. John Benjamins Amsterdam, 21–30.

[3] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and Susana Zoghbi. 2009. Measurement instruments for the anthro-

pomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Soc. Robot. 1, 1 (2009), 71–81.

[4] Luciana Benotti and Patrick Blackburn. 2016. Polite interactions with robots. What Social Robots Can and Should Do:

Proceedings of Robophilosophy 2016/TRANSOR 2016 290 (2016), 293.

[5] Timothy Brick and Matthias Scheutz. 2007. Incremental natural language processing for HRI. In Proceedings of the

2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI’07). IEEE, 263–270.

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 2, Article 17. Publication date: February 2022.



17:16 R. B. Jackson and T. Williams

[6] Gordon Briggs and Matthias Scheutz. 2012. Multi-modal belief updates in multi-robot human-robot dialogue interac-

tion. In Proceedings of the Symposium on Linguistic and Cognitive Approaches to Dialogue Agents.

[7] Gordon Briggs and Matthias Scheutz. 2014. How robots can affect human behavior: Investigating the effects of robotic

displays of protest and distress. Int. J. Soc. Robot. (2014).

[8] Gordon Briggs, Tom Williams, and Matthias Scheutz. 2017. Enabling robots to understand indirect speech acts in

task-based interactions. J. Hum.-Rob. Interact. 6, 1 (2017), 64–94.

[9] Penelope Brown and Stephen Levinson. 1987. Politeness: Some Universals in Language Usage. Cambridge University

Press.

[10] Michael Buhrmester, Tracy Kwang, and Samuel D. Gosling. 2011. Amazon’s mechanical turk: A new source of inex-

pensive, yet high-quality, data? Perspect. Psychol. Sci. 6, 1 (2011), 3–5.

[11] Matthew J. C. Crump, John V. McDonnell, and Todd M. Gureckis. 2013. Evaluating amazon’s mechanical turk as a tool

for experimental behavioral research. PLoS One 8, 3 (2013).

[12] Maartje Ma De Graaf, Somaya Ben Allouch, and Tineke Klamer. 2015. Sharing a life with harvey: Exploring the

acceptance of and relationship-building with a social robot. Comput. Hum. Behav. (2015).

[13] Juraj Dzifcak, Matthias Scheutz, Chitta Baral, and Paul Schermerhorn. 2009. What to do and how to do it: Trans-

lating natural language directives into temporal and dynamic logic representation for goal management and action

execution. In Proceedings of the International Conference on Robotics and Automation.

[14] Friederike Eyssel and Dieta Kuchenbrandt. 2012. Social categorization of social robots: Anthropomorphism as a func-

tion of robot group membership. Br. J. Soc. Psychol. 4 (2012).

[15] Daniel Fried, Jacob Andreas, and Dan Klein. 2018. Unified pragmatic models for generating and following instructions.

In Proceedings of the Conference of the North American Chapter of the ACL: Human Language Tech.

[16] Felix Gervits, Gordon Briggs, and Matthias Scheutz. 2017. The pragmatic parliament: A framework for socially-

appropriate utterance selection in artificial agents. In Proceedings of the Annual Meeting of the Cognitive Science Society.

[17] Francesca Gino. 2015. Understanding ordinary unethical behavior: Why people who value morality act immorally.

Curr. Opin. Behav. Sci. 3 (2015), 107–111.

[18] Paul Grice. 1975. Logic and conversation. In Syntax and Semantics.

[19] Todd Gureckis, Jay Martin, John McDonnell, et al. 2016. psiTurk: An open-source framework for conducting replicable

behavioral experiments online. Behav. Res. Methods 48, 3 (2016), 829–842.

[20] Ryan Blake Jackson, Sihui Li, Santosh Balajee Banisetty, Sriram Siva, Hao Zhang, Neil Dantam, and Tom Williams.

2021. An integrated approach to context-sensitive moral cognition in robot cognitive architectures. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS’21).

[21] Ryan Blake Jackson, Ruchen Wen, and Tom Williams. 2019. Tact in noncompliance: The need for pragmatically apt

responses to unethical commands. In Proceedings of the AAAI Conf. on Artificial Intelligence, Ethics, and Society.

[22] Ryan Blake Jackson and Tom Williams. 2018. Robot: Asker of questions and changer of norms? In Proceedings of the

International Conference on Robot Ethics and Standards (ICRES’18).

[23] Ryan Blake Jackson and Tom Williams. 2019. Language-Capable robots may inadvertently weaken human moral

norms. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction Alternative Papers

(alt.HRI’19).

[24] Ryan Blake Jackson and Tom Williams. 2019. On perceived social and moral agency in natural language capable robots.

In Proceedings of the HRI Workshop on The Dark Side of Human-Robot Interaction.

[25] Andrew F. Jarosz and Jennifer Wiley. 2014. What are the odds? a practical guide to computing and reporting bayes

factors. J. Probl. Solv. 7 (2014).

[26] JASP Team et al. 2016. Jasp. Version 0.8. 0.0. software.

[27] Peter H. Kahn, Takayuki Kanda, Hiroshi Ishiguro, Brian T. Gill, Jolina H. Ruckert, Solace Shen, Heather Gary, Aimee L.

Reichert, Nathan G. Freier, and Rachel L . Severson. 2012. Do people hold a humanoid robot morally accountable for

the harm it causes?. In Proceedings of the 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI’12).

[28] James Kennedy, Paul Baxter, and Tony Belpaeme. 2014. Children comply with a robot’s indirect requests. In Proceedings

of HRI. ACM, 198–199.

[29] Ross A. Knepper. 2016. On the communicative aspect of human-robot joint action. In Proceedings of the RO-MAN

Workshop: Toward a Framework for Joint Action, What about Common Ground.

[30] Stephen C. Levinson. 2000. Presumptive Meanings: The Theory of Generalized Conversational Implicature. MIT Press.

[31] Patrick Lin, George Bekey, and Keith Abney. 2008. Autonomous Military Robotics: Risk, Ethics, and Design. Technical

Report. Cal. Polytechnic State University San Luis Obispo.

[32] Bertram F. Malle, Matthias Scheutz, Thomas Arnold, John Voiklis, and Corey Cusimano. 2015. Sacrifice one for the

good of many?: People apply different moral norms to human and robot agents. In Proceedings of the ACM/IEEE

International Conference on Human-Robot Interaction (HRI’15).

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 2, Article 17. Publication date: February 2022.



Enabling Morally Sensitive Robotic Clarification Requests 17:17

[33] Matthew Marge and Alexander I. Rudnicky. 2015. Miscommunication recovery in physically situated dialogue. In

Proceedings of the Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGdial’15). 22–49.

[34] Tatsuya Nomura, Takayuki Uratani, Takayuki Kanda, Kazutaka Matsumoto, Hiroyuki Kidokoro, Yoshitaka Suehiro,

and Sachie Yamada. 2015. Why do children abuse robots? In Proceedings of HRI Extended Abstracts (HRI’15 Extended

Abstracts).

[35] Matthew Richard John Purver. 2004. The Theory and Use of Clarification Requests in Dialogue. Ph.D. Dissertation.

University of London.

[36] B. Scassellati, H. Admoni, and M. Mataric. 2012. Robots for use in autism research. Annu. Rev. Biomed. Eng. 14 (2012),

275–294.

[37] Matthias Scheutz, Gordon Briggs, Rehj Cantrell, Evan Krause, Tom Williams, and Richard Veale. 2013. Novel mech-

anisms for natural human-robot interactions in the DIARC architecture. In Proceedings of the AAAI Workshop on

Intelligent Robotic Systems.

[38] Matthias Scheutz, Evan Krause, Brad Oosterveld, Tyler Frasca, and Robert Platt. 2017. Spoken instruction-based one-

shot object and action learning in a cognitive robotic architecture. In Proceedings of the International Conference on

Autonomous Agents and Multiagent Systems (AAMAS’17).

[39] Matthias Scheutz, Bertram Malle, and Gordon Briggs. 2015. Towards morally sensitive action selection for autonomous

social robots. In Proceedings of the International Symposium on Robot and Human Interactive Communication (RO-

MAN’15).

[40] Matthias Scheutz, Thomas Williams, Evan Krause, Bradley Oosterveld, Vasanth Sarathy, and Tyler Frasca. 2018. An

overview of the distributed integrated cognition affect and reflection DIARC architecture. In Cognitive Architectures.

[41] John R. Searle. 1975. Indirect speech acts. Syntax Semant. 3 (1975), 59–82.

[42] Noel Sharkey and Amanda Sharkey. 2010. The crying shame of robot nannies: An ethical appraisal. Interact. Stud. 11,

2 (2010), 161–190.

[43] Reid Simmons, Maxim Makatchev, Rachel Kirby, Min Kyung Lee, et al. 2011. Believable robot characters. AI Mag. 4

(2011).

[44] Neil Stewart, Jesse Chandler, and Gabriele Paolacci. 2017. Crowdsourcing samples in cognitive science. Trends Cogn.

Sci. (2017).

[45] Stefanie Tellex, Pratiksha Thaker, Robin Deits, Dimitar Simeonov, Thomas Kollar, and Nicholas Roy. 2013. Toward

information theoretic human-robot dialog. Robot.: Sci. Syst. 32 (2013), 409–417.

[46] Sean Trott and Benjamin Bergen. 2017. A theoretical model of indirect request comprehension. In Proceedings of the

AAAI Fall Symposium Series on Artificial Intelligence for Human-Robot Interaction.

[47] Peter-Paul Verbeek. 2011. Moralizing Technology: Understanding and Designing the Morality of Things. University of

Chicago Press.

[48] Kazuyoshi Wada and Takanori Shibata. 2007. Living with seal robots – its sociopsychological and physiological influ-

ences on the elderly at a care house. IEEE Trans. Robot. 23, 5 (2007), 972–980.

[49] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea, Peter Wolf, and Joe Woelfel. 2004.

Sphinx-4: A flexible open source framework for speech recognition.

[50] James Wen, Amanda Stewart, Mark Billinghurst, Arindam Dey, Chad Tossell, and Victor Finomore. 2018. He who

hesitates is lost (...In Thoughts over a Robot). In Proceedings of the Annual Conference on Technology, Mind, and Society

(TechMindSociety ’18).

[51] Tom Williams. 2017. A consultant framework for natural language processing in integrated robot architectures. IEEE

Intell. Inf. Bull. (2017).

[52] Tom Williams, Saurav Acharya, Stephanie Schreitter, and Matthias Scheutz. 2016. Situated open world reference reso-

lution for human-robot dialogue. In Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction

(HRI’16).

[53] Tom Williams, Gordon Briggs, Bradley Oosterveld, and Matthias Scheutz. 2015. Going beyond command-based in-

structions: Extending robotic natural language interaction capabilities. In Proceedings of the AAAI Annual Conference

on Artificial Intelligence (AAAI’15).

[54] Tom Williams, Ryan Blake Jackson, and Jane Lockshin. 2018. A bayesian analysis of moral norm malleability during

clarification dialogues. In Proceedings of the Annual Meeting of the Cognitive Science Society (COGSCI’18). Cognitive

Science Society.

[55] Tom Williams and Matthias Scheutz. 2016. A framework for resolving open-world referential expressions in dis-

tributed heterogeneous knowledge bases. In Proceedings of the AAAI Annual Conference on Artificial Intelligence

(AAAI’16).

[56] Tom Williams and Matthias Scheutz. 2018. Reference in robotics: A givenness hierarchy theoretic approach. In The

Oxford Handbook of Reference, Jeanette Gundel and Barbara Abbott (Eds.).

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 2, Article 17. Publication date: February 2022.



17:18 R. B. Jackson and T. Williams

[57] Tom Williams, Daria Thames, Julia Novakoff, and Matthias Scheutz. 2018. “Thank you for sharing that interesting

fact!”: Effects of capability and context on indirect speech act use in task-based human-robot dialogue. In Proceedings

of the ACM/IEEE International Conference on Human-Robot Interaction (HRI’18).

[58] Tom Williams, Ravenna Thielstrom, Evan Krause, Bradley Oosterveld, and Matthias Scheutz. 2018. Augmenting robot

knowledge consultants with distributed short term memory. In Proceedings of the International Conference on Social

Robotics. 170–180.

[59] Tom Williams, Fereshta Yazdani, Prasanth Suresh, Matthias Scheutz, and Michael Beetz. 2018. Dempster-Shafer theo-

retic resolution of referential ambiguity. Auton. Robots (2018).

Received January 2021; revised August 2021; accepted November 2021

ACM Transactions on Human-Robot Interaction, Vol. 11, No. 2, Article 17. Publication date: February 2022.


