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Abstract— Acceptance of social robots in human-robot col-
laborative environments depends on the robots’ sensitivity to
human moral and social norms. Robot behavior that violates
norms may decrease trust and lead human interactants to
blame the robot and view it negatively. Hence, for long-term
acceptance, social robots need to detect possible norm violations
in their action plans and refuse to perform such plans. This
paper integrates the Distributed, Integrated, Affect, Reflection,
Cognition (DIARC) robot architecture (implemented in the
Agent Development Environment (ADE)) with a novel place
recognition module and a norm-aware task planner to achieve
context-sensitive moral reasoning. This will allow the robot
to reject inappropriate commands and comply with context-
sensitive norms. In a validation scenario, our results show that
the robot would not comply with a human command to violate
a privacy norm in a private context.

I. INTRODUCTION

The fields of social robotics [1] and socially assistive
robotics [2] are enabling robot integration into human envi-
ronments. Unlike other robots, autonomous socially assistive
robots such as therapy robots [3] and companion robots [4]
interact with human partners on a social level through
humanlike verbal [5] and non-verbal [6], [7] communicative
cues (e.g., speech, gaze, gestures, and posture).

For social robots to be effectively integrated into human
societies, they must be able to take actions (and make sense
of the actions of others) with sensitivity to the social and
moral norms that govern society. Social and moral norms are
well understood to be both dynamic and malleable [8]. That
is, different norms apply in different situations, with bundles
of norms activated based on different contextual factors and
cues; and norms change over time, on the basis of whether
and how they are communicated between and enforced by
community members. Shouting, for example, is permissible
on a beach, but not in a library, and this standard is only
upheld so long as library-goers continue to communicate this
norm to each other, and sanction those who violate it.

Malle and Scheutz propose three key requirements for
robotic moral competence that leverage knowledge of sys-
tems of moral norms [9], [10]: (1) moral cognition (the
ability to make moral judgments in light of norms); (2) moral
decision making and action (the ability to choose actions that
conform to norms); and (3) moral communication (the ability
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to use norm-sensitive language and explain norm-relevant
actions). While there is some previous work in the human-
robot interaction literature on representing moral norms and
enabling these key competencies, they have neither captured
the context-sensitive nature of realistic moral norms, the
need to account for morally impermissible actions that may
be necessitated in the future if a given course of action is
immediately adopted, nor the way that primitive actions are
dynamically provided by distributed components of current
integrated robot architectures.

Specifically, there has recently been a significant body of
research towards enabling transparent and explainable robot
systems, including approaches for explaining plans [11],
[12], [13], [14], [15], [16], [17], rationalizing actions [18],
transparently representing intent [19], preemptive explana-
tion [20], and intention projection [21]. However, these
approaches have not explicitly sought to enable explainability
on moral grounds, nor have they captured the realistic way
that human commands are typically framed, especially with
respect to humans’ use of sociocultural linguistic norms.

In contrast to Raman et al. [22], for example, socially
assistive robots embedded into human social environments
must be able not only to appropriately handle direct com-
mands, but also more common indirect language as well; not
only parsing natural language but also performing functions
such as pragmatic inference and reference resolution; not
only identifying contradictions between current and previ-
ous commands, but also identifying when commands are
impermissible based on various context-sensitive systems of
moral norms. As described in subsequent sections, these are
capabilities enabled by our approach.

Similarly, there have been a number of attempts to devise
mechanisms to ensure (or at least support) moral decision
making for robots [23], [24], [25], [26], [27], [28], and some
approaches towards enabling moral communication in robots,
including work on command rejection [29], and generation
of language to explain the robot’s ethical (or unethical)
decisions [30], [31], [32], [33], [34], [35], [36]. Other work
has also recognized the need for robust and flexible task
planning for HRI, and has sought to integrate that capacity
with the various other capabilities necessary for task-based
HRI [37].

Of greatest relevance to this work is that of Briggs et
al. [29], who parse natural language into predicate logic
formulae, and, after performing pragmatic reasoning, check
whether or not the robot is permitted to perform the requested



action. Our approach is similar to this approach, as it uses
the same robot architecture, and more specifically, the same
components for dialogue and goal management. However,
their approach does not provide the breadth of situated,
context-sensitive capabilities (such as reference resolution)
needed to engage in task-based communication in situated
contexts, and only identified commands that violated norms
through immediate action, involving no planning to consider
the permissibility of future actions, and was unable to
automatically detect and leverage changes in context that
should activate different sets of moral norms.

In this work, we seek to enable these new capacities
through an integrated systems approach. By integrating goal-
directed reasoning, task-planning, and context recognition
capabilities provided by distinct robot architectures, we en-
able robots to successfully reject courses of action that would
ultimately require actions that would violate context-sensitive
deontic norms, using a set of actions and knowledge dynam-
ically provided by a flexible set of distributed architectural
components.

The remainder of this paper is structured as follows.
In Section II, we present a brief overview of the DIARC
architecture implemented in the agent development environ-
ment (ADE), including the key components used for goal-
directed robotic cognition and sociolinguistic-norm-sensitive
natural language understanding. In section III, we discuss
a constraint-based robot task planner used to achieve high-
level goals – and to generate an unsatisfiable core containing
a minimal “explanation” for goal infeasibility when achieve-
ment of a user request is not possible or would require
violation of norms to complete. In section IV, we discuss
voxel-based representation learning for place recognition.
Sections V and VI detail the integration and implementation
of the proposed method and its validation, respectively.
Finally, in section VII, we conclude with a discussion of
limitations and directions for future work.

II. ADE & DIARC

The Distributed, Integrated, Affect, Reflection, Cognitive
(DIARC) Robot Architecture [38] is a hybrid deliberative-
reactive robot architecture that facilitates a wide variety of
cognitive capabilities [39], with special attention to goal-
driven cognition and natural language understanding and
generation. DIARC is implemented in the Agent Devel-
opment Environment (ADE) distributed multi-agent sys-
tem middleware. ADE facilitates distributed computation,
fault tolerance, recovery mechanisms, autonomic comput-
ing, and dynamic system configuration by treating architec-
tural components as autonomous software agents [40], [41],
[42]. Unlike other classic cognitive architectures, DIARC’s
polylithic nature is designed to enable autonomous, long-
term robotic operation. Similar to robot middlewares such
as ROS [43], Yarp [44], and JAUS [45], ADE facilitates
parallel distributed communication and computation between
architectural components. ADE was designed to be secure
and fault-tolerant [40], [46].

The specific DIARC components leveraged in this work,
and their interaction with the rest of our integrated sys-
tem, are detailed in Section V. However, critical to note
at this stage is that DIARC takes a goal-driven cognition
approach to action selection, with different goals, derived
from interlocutors or formulated by the robot itself, arbitrated
between by the robot on the basis of their priority or affective
appraisal, primarily taking whichever primitive actions can
be immediately used to satisfy those goals. Previous work
has demonstrated how this just-in-time goal-driven action
selection can be made with sensitivity to deontic moral
norms; however, in order to ensure that those actions do
not necessitate future performance of norm-violating actions,
forward-looking task planning is required. As such, in the
next section we describe the task planning capabilities inte-
grated with DIARC in this work.

III. TASK PLANNER

Robot task planning focuses on achieving high-level
goals [47], [48]. In task planning, we describe the physical
world through symbolic, typically discrete, states and actions
that are abstracted from continuous motions. A task plan is
a step by step sequence of actions that the robot takes to
achieve a goal state. For example, to grasp an object inside
a cabinet, the robot would need to perform the following
actions: moving to the cabinet, opening the cabinet door,
and grasping the target object. Given a proper description of
the world, a task planner reasons about the robot’s state and
actions that change state over time to reach an intended goal.

The task planner requires a symbolic description of the
world as input. We use Planning Domain Definition Lan-
guage (PDDL) [49], a de facto standard in the planning
community [50], to describe the world. PDDL describes
the domain using first order logic and includes a set of
predicates, objects in the world, actions with preconditions
and effects, a start state, and a goal condition. States, i.e.,
truth of predicates applied to objects, change over time as a
result of actions. PDDL separates a planning problem into
two parts. First, a domain description specifies the discrete
dynamics of the planning domain. The domain description
includes a list of predicates that can be used to describe the
state space of the robot, and a list of actions a robot can take
in the world. Second, a fact description specifies a problem
to be solved. The fact description includes a list of objects in
the world, initial conditions, and goals. Since first developed,
different versions of PDDL have been designed that enrich
the types of problems PDDL can describe [51], [52], [53]. In
our case, we use PDDL3 [53] because of its ability to specify
facts that always hold during planning, which is essential
when we encode moral norms.

A norm states how agents should behave in order to com-
port with community standards. In this work, we specifically
focus on norms of obligation, permission, and forbiddeness,
which indicate that certain actions or states must, can be,
or must not be entered into or taken by “good” community
members.



Definition 1: Formally, a moral norm is C =⇒ op(x),
where C is a context, op is “forbidden”, “permitted”, or
“obligated”, and x is set of states or actions.

We encode moral norms in the planning domain. We
represent contexts as logical expressions on state variables.
A norm is then a constraint to indicate some set of states
or actions must not (forbidden), may (permitted), or must
(obligated) occur.

moral norm︷ ︸︸ ︷
C =⇒ obligated(x) ≡

planning constraint︷ ︸︸ ︷
∀k, ¬(C〈k〉 ∧ ¬x〈k〉) (1)

moral norm︷ ︸︸ ︷
C =⇒ forbidden(x) ≡

planning constraint︷ ︸︸ ︷
∀k, ¬(C〈k〉 ∧ x〈k〉) (2)

With these definitions, we can encode moral norms into
the PDDL descriptions using PDDL3’s ability to describe
facts that always hold during planning.

Given the PDDL descriptions, we run a constraint-based
task planner to generate a plan [54]. The task planner encodes
a planning problem into a set of constraints in the form of a
Boolean formula, then adopts advanced Satisfiability Modulo
Theories (SMT) solvers [55] to find a satisfying plan. To
incorporate the moral norms, we add to the planer the ability
to encode the moral norms in the PDDL descriptions into a
set of Boolean formulas that must be satisfied at each step of
the plan. In this way, the task planner always returns plans
that follow the moral norms.

When no plan can be found, the task planner will produce
an unsatisfiable core, which we use to analyze the cause of
the planning failure. The unsatisfiable core is the minimal
set of clauses (e.g., goals, norms, and action preconditions)
that make the plan infeasible. If an unsatisfiable core result
includes both a moral norm and actions, it means the actions
are mutually exclusive with the moral norm, thus the actions
are the cause of plan failure under the moral norm.

At this stage, norms, and the contexts in which they apply,
are specified a priori to the robot by human operators. How-
ever, we have included endpoints in the task planner’s API to
allow DIARC components to dynamically add norms if they
have norms that govern their actions or the capacity to learn
norms over time. The context-sensitive norm-based moral
reasoning performed using this planner relies on knowledge
of the robot’s context, so we will now describe the system
we use to perceive and recognize context.

IV. PLACE RECOGNITION FOR CONTEXT GENERATION

In this work, we specifically considered location-based
contexts that can be recognized using place recognition
techniques [56], which seek to identify a given location from
a set of templates. Place recognition is a generally useful
capability for robotic systems, as it can be used to reduce
the uncertainty and ambiguity in estimated maps and robot
poses, thereby significantly improving the accuracy of robot
mapping and localization.

Long-term Place recognition [57] addresses the key chal-
lenge that many robot navigation environments are dynamic
in nature and change over time. For example, in the case of

indoor navigational environments the lighting conditions, ar-
rangement of furniture, and human activities and movements
can change on a daily basis.

In this paper, we achieve Long-term Place recognition
using a voxel-based representation learning approach [58]
(VBRL) that uses 3D point clouds to recognize previously
visited locations. Unlike methods that rely on RGB cameras
[59], [60], [61], the VBRL approach uses a LiDAR sensor to
obtain the 3D point cloud representation of the environment.
This enables the robot to operate in environments with low
lighting conditions and also helps to recognize contexts from
the 360-degree field of view of the LiDAR sensor. This is
especially helpful in dynamic indoor environments where
humans may occlude the limited field of view of an RGB-
based camera sensor.

The VBRL approach divides each 3D point cloud obtained
from a LiDAR sensor into multiple voxels in the 3D space.
Multiple types of features are then extracted from each
voxel. The VBRL approach then automatically learns the
importance of each feature modality extracted from these 3D
voxels, as well as the importance of the voxels themselves.
Voxel importance learning is inspired by the insight that spe-
cific set of voxels are more representative and better encode
location-based contexts. For example, in a 3D point cloud
based voxel representation, the voxels closer to the LiDAR
sensor can be more informative in representing the place,
since more details are captured by the 3D points of objects
that are closer to the sensor. Mathematically, the learning of
voxel importance is achieved in the VBRL approach using
structured sparsity-inducing norms as regularizations into
the optimization formulation. These learned representations
are then integrated in a unified regularized optimization
formulation to best represent location-based contexts.

V. ARCHITECTURE & INTEGRATION

In this section, we briefly discuss the way in which the
planning and context recognition capabilities described in the
previous sections are integrated with the DIARC architecture.
This integration is shown in Figure 1.

A. Natural Language Understanding

We begin by describing the Natural Language Understand-
ing components used in our DIARC configuration because
the goals that drive robot behavior typically come from
natural language human utterances. The first component
used for Natural Language Understanding is Automatic
Speech Recognition (ASR), which converts natural speech
signals (acoustic signals) into text representations, which
are sent to the architecture’s Parser. The Parser translates
the text representations provided by ASR into unbound
logical predicates representing the surface semantics of the
speaker’s utterance, by means of a Combinatory Categorial
Grammar. Uniquely, this grammar encodes Givenness Hier-
archy theoretic information in resultant parse representations,
to facilitate anaphora resolution. These representations are
then provided to the Pragmatics component, which uses a
set of context-sensitive rules encoding sociocultural norms



Fig. 1. Integrated Robot Architecture

(especially the sociocultural politeness norms needed to
understand and generate indirect speech acts) to translate
those surface semantics into the (unbound) intended meaning
of the utterance [62], [63]. This Utterance Structure is then
provided to Reference Resolution, which uses Givenness
Hierarchy theoretic processes [64], [65] with a Probabilistic
Open-World Reference Resolution [66], [67] subroutine to
identify what objects, locations, people, etc., were involved
in any noun phrases, in order to produce a bound utterance
structure precisely encoding the meaning of the speaker’s
utterance as grounded in the robot’s knowledge of its envi-
ronment. These representations can then be provided to the
Dialogue Manager component, which, if the robot decides
to do so, uptakes any assertions, questions, and goals.

B. Goal Manager

Goals uptaken from human utterances or otherwise formu-
lated by the robot are handled by DIARC’s Goal Manager,
which selects actions to take in response to those goals [68],
[69]. These actions could be steps towards achieving the goal,
or communicative acts relating to the goal, such as issuing
a command refusal for a goal that does not comply with the
robot’s moral reasoning capabilities.

Because the goal manager functions as the central ex-
ecutive of high-level cognition in the DIARC architecture,
it is where we decided to integrate DIARC with the task
planning and context recognition systems described in the
previous sections. Prior to this integration with the task
planner and context recognizer, ADE’s Goal Manager had
some rudimentary moral reasoning capabilities[26]: Given a
list of forbidden states or actions, the Goal Manager would
never take a forbidden action or an action that was known
to directly cause a forbidden state. However, any forbidden
action was forbidden categorically, regardless of context,
and, without the ability to determine context continuously
from perceptual information, it was also not practical to
specify context-sensitive forbidden states. The new context
recognizer and norm specification method solve these issues.

However, an even greater advantage of integrating the
Goal Manager and task planner is the ability this enables to
communicate about infeasible or impermissible goals. Previ-
ous experimental work has demonstrated a need for robots
to communicate clearly, thoroughly, and proactively about
morally impermissible human commands. Failure to do so
can both mislead human interlocutors about the robot’s moral
intentions and also, perhaps more worryingly, weaken human
perception or application of moral norms within their current
context [70]. Recently, we have developed mechanisms that
avoid these issues in certain situations by communicating
more proactively about infeasible and impermissible human
commands [71]. Obtaining more detailed information from
the planner’s unsatisfiable core will allow us to construct
more detailed and effective command refusals.

The Goal Manager communicates with the task planner
via a REST API as shown in Figure 1. We now describe the
five types of information that the Goal Manager aggregates
and sends to the planner, where this information comes from,
and exactly how it is communicated.

1) Actions: Every component in ADE advertises actions
that correspond to the abilities of the robot. For example, the
natural language generation components provide actions for
saying words, while the component controlling the robot’s
body provides actions for moving in and manipulating the
environment. These actions may be annotated with precon-
ditions that must be met before they can be taken, and
effects of having performed them. Every action is automat-
ically assumed to have the effect of having done the action
(e.g., the action “grasp(x)” is automatically given the effect
“did grasp(x)”, and may be optionally annotated with further
effects like “holding(x)”). The Goal Manager is notified
by the central registry of ADE components whenever a
component joins or leaves the system (since ADE is designed
to allow distributed multi-robot systems, components can
join and leave dynamically at unpredictable times). When-
ever a component joins, the Goal Manager updates the task
planner with all of that component’s actions, as well as their



parameters, preconditions, and effects. The Goal Manager
does the same thing for any components that are already
running when it starts running. Likewise, when a component
leaves, the Goal Manager removes the actions that are no
longer available from the task planner’s domain.

2) Predicates: For purposes of the task planner, predicates
specify everything that can be true of the world and the
objects in it. A variety of predicates are sent to the task
planner for different reasons, as detailed below.

First, every action precondition and effect are automat-
ically added to the task planner as predicates when the
relevant action is added.

Second, due to our use of a context recognition algorithm,
the Goal Manager adds a predicate “in(?context)” when it
starts running that allows it to later specify the context that
the robot is in (e.g., “in(corridor)”).

Third, other predicates are provided by the robot’s percep-
tual capabilities and built-in ontologies, through a general
Consultant interface as described in previous work [72].
Specifically, ADE uses the Givenness Hierarchy theoretic
version [65], [64] of the Probabilistic Open-World Entity
Resolution (POWER) algorithm [67] and its associated con-
sultant framework [72] for reference resolution, and the same
consultants are relevant here. The robot can be provided
with a variety of different consultants to handle the different
kinds of information that it might need to know in any
given role. We commonly use a vision consultant to perceive
and store knowledge about visually perceptible objects and
their properties. Predicates that would come from the vision
consultant might include color like “red(x)” and “green(x)”,
and type of object like “ball(x)” or “box(x)”, but could
include any object property the robot can discern. Another
example is the agent consultant that stores information about
other agents (like humans) with which the robot interacts.

Unlike with actions, we do not simply update the task
planner with predicates from consultants whenever a con-
sultant joins or leaves. Some consultants can dynamically
change the properties that they handle, for example, by
learning new properties (e.g., the vision consultant being
taught a new color “blue(x)” when previously the only two
known colors were red and green). To allow for this kind
of learning and flexibility in the consultants, the Goal Man-
ager always queries the consultants for any new properties
handled immediately before requesting a new plan for a new
goal. It then sends these new properties as new predicates
to the task planner. Likewise, any properties that used to
be handled by some consultant but are not anymore (e.g.,
if a consultant stopped running) are removed from the task
planner’s list of predicates at this stage.

3) Objects: Objects, as far as the task planner is con-
cerned, are things in the world to which predicates can apply
or actions can be done. One important set of objects for
our integration with the context recognizer is the set of all
possible contexts that can be recognized. These context labels
are necessarily known a priori, so the Goal Manager sends
all of them as objects to the task planner when it starts
running. Other objects come from the consultants described

above. Since consultants can continuously learn of new ob-
jects or discard misperceived objects or objects that become
irrelevant for whatever reason, the Goal Manager always
queries the consultants for known objects immediately before
requesting a new plan, and updates the task planer’s list of
objects accordingly.

4) Initial Conditions: Since the state of the world relative
to the robot can change during the time between calls to the
task planner, the Goal Manager updates the task planner with
a new set of initial conditions each time it requests a new
plan. One important initial condition is the context that the
robot is in, which the Goal Manager gets from the ROS topic
associated with the context recognizer and then sends to the
task planner as an “in” predicate (e.g., “in(corridor)”).

Other initial conditions could theoretically come from
the consultants described above, but it is computationally
wasteful to update the planner with all knowledge from every
consultant about every known entity in the world, when
the vast majority of this information is likely irrelevant to
any given goal. Furthermore, many consultants deal with
uncertainty and ambiguity, both perceptual and linguistic,
and therefore cannot always assert all properties of an entity
with a useful degree of certainty. Therefore, we have created
a way for the Goal Manager to query consultants about
specific objects and send the results to the task planner so
that, in the future, we can either specify important domain-
specific objects a priori or alter the task planner such
that there is a bidirectional interchange between it and the
Goal Manager throughout the planning process such that the
task planner can request specific information that the Goal
Manager can then provide via consultants (e.g., where can
we find a cutting board?).

5) Goals: Of course, to obtain a task plan for a goal, the
Goal Manager must send that goal to the task planner. Goals
are specified as predicates describing some desired state
of the world (e.g., “did-grasp(object1)”). After specifying a
goal to the task planner, the Goal Manager activates an API
endpoint telling the planner to make a plan, and waits for it
to finish. When planning is done, the Goal Manager receives
either the completed plan if possible or the unsatisfiable core
if a plan could not be made for whatever reason. This result
remains available until a new plan is requested so that it can
eventually be accessed multiple times by upstream dialogue
components if necessary without re-planning.

C. The task planner

The inputs to the task planer (left of Figure 1) are the
PDDL domain description and fact description. The task
planner exposes a Web Service API, which ADE uses to
communicate changes to the domain and fact descriptions.
The task planer outputs a plan if the goals are satisfiable
under the norms, or an unsatisfiable core containing actions,
goals, and norms that cause planning failure.

The domain description encodes all the actions the robot
can take. These actions come from the various ADE compo-
nents that advertise the actions that they enable the robot
to do. The domain description is automatically generated



from these components as described above. The task planner
API automatically adds new predicates in the actions’ pre-
conditions and effects fields to the domain description.

Moral norms are encoded in the PDDL as described in
section III. We update the objects, initial conditions and
goals in the fact description every time a plan is required for
a new goal. Most notably, place recognition results update
the initial condition in the fact description with a predicate
like “in(corridor)”, which changes the context of the current
plan. Other initial conditions and objects come from ADE
consultants such as the vision consultant, as described above.

D. Navigation and Place Recognition

Robot navigation is achieved through the navigation stack
of ROS. ROS nav stack is configured to use Search Based
Planning Library (SBPL) global planner and Model Pre-
dictive Path Intergral (MPPI) local planner for global and
local planning respectively. The map server input is used by
global costmap package to represent global environmental
obstacles with the help of sensory input such as laser scan-
ners. On the other hand, local costmap package represents
dynamic and nearby obstacles as costmaps using the same
laser scan input. The global planner takes a goal pose as
input and computes the shortest path from the robot’s current
position to the goal. This computed path is fed as input to
the local planner which follows the path closely by avoiding
obstacles as detected in the local costmaps. The local planner
computes the cmd vel (desired robot velocity) to reach the
desired goal based on odometry data from the environment.
ROS navigation stack also incorporates recovery behaviors
to help the robot if it gets stuck (right of Figure 1).

Our voxel-based place recognition module uses 360-
degree 3D point cloud data as input to determine the robot’s
current location (place label). A 3D point cloud of the
environment is constructed using LiDAR input which is fed
to our VBRL place recognition node, which in turn outputs
the label of the recognized place as a ROS topic accessible
to DIARC’s goal manager; for example, corridor, classroom,
etc. This is the source of the context information for the
goal manager and task planner. Adding further perceptual
capabilities could allow for more detailed context informa-
tion or other types of context information. The integration of
ROS components with DIARC is through the rosbridge suite
package [73], which uses a WebSocket interface via Java API
to communicate with non-ROS parts of the robot, in our case,
DIARC’s goal manager.

VI. VALIDATION

To demonstrate the functionality of our integration and
to more concretely illustrate the concepts described above,
we evaluate our system in a simple example scenario. This
scenario is designed to showcase our multi-step planning
capability that takes into account context-sensitive norms
as the robot moves through various contexts (see Figure
2). Because this work is not concerned with having the
robot actually manipulate its environment, but rather with the
cognitive capacities required to make a plan to do so, and to

Fig. 2. The Clearpath Husky used in the validation of our system. Inset:
Sensory input to the robot.

avoid gatherings of students during the COVID-19 pandemic,
point cloud information was pre-collected and played back
during testing (Figure 2 inset), with courses of action planned
but not executed.

A. Setup

This scenario takes place in a typical academic building on
a university campus. The four contexts involved in our sce-
nario, which are recognized from point cloud data, labeled,
and supplied to the Goal Manager as described above, are:
Corridor, Lab, Washroom, and Studyroom. The robot moves
between these contexts, and receives a human command to
“report occupants” in each.

The robot knows three actions relevant to reporting the
occupants in a room. The report-occupants action
achieves the goal of reporting the occupants, but requires
that the robot take a picture of the room as a prerequisite.
The take-picture action fulfills this prerequisite, but
requires as a prerequisite of its own that the robot make
a noise to get the attention of the people in the room.
The attention-noise action achieves this prerequisite
and has no prerequisites. Thus, the instruction to report
occupants requires three steps: (1) attention-noise,
(2) take-picture, (3) report-occupants. We chose
these actions to present a multi-step process that would be
feasible for our robot, which has perceptual and movement
capabilities but no arms or graspers for manipulation.

There is also a norm in our scenario that the robot is
not allowed to perform the “take picture” action in the
washroom context. We believe that typical privacy norms
make this rule very realistic. This norm is represented in
the PDDL fact file as follows: (and (always (or (not

(did-takepicture)) (not (in washroom)))))

B. Results

As expected, in any room except the washroom, the
planner returns the sequence of three actions required to
achieve the goal of reporting the occupants such that the
Goal Manager could then parse this plan and execute this
sequence of actions. In the washroom, the planner returns
the unsatisfiable core specifying that taking a picture is
incompatible with being in the washroom. This information



could then be used by the natural language generation
pipeline to communicate this reasoning to the human in a
command refusal.

VII. DISCUSSION & FUTURE WORK

To summarize, our integrated approach to context-sensitive
moral cognition uses automatically generated context-
specific domain descriptions to encode the actions a robot
can take, as provided by a dynamic and flexible set of
architectural components. By doing so, a robot can perform
context-aware rejection of morally impermissible or infea-
sible plans. Our work differs from existing methods in its
ability to (1) activate different moral norms based on its
(automatically sensed) context, (2) assess the permissibility
of future behaviors that would be required when committing
to an immediate course of action, and (3) perform moral
reasoning regarding natural language containing realistic
references and indirect speech acts that must be resolved
based on the robot’s situated context. Finally, the integration
presented in this paper and the novel capabilities enabled by
this integration lay the groundwork for a variety of directions
for future work.

The first step for building on this architecture will be to
parse plans from the task planner into action scripts usable
by DIARC. This will allow each action in the plan to be sent
to the component responsible for performing that action, and
for plans to be executed in a distributed fashion.

Second, in future work the unsatisfiable core may be
used to generate natural language command rejections for
morally impermissible human commands. Prior work has
shown that properly calibrating the politeness of robotic
command rejections to conversational and social context is
critical to HRI [74], [75], so it will be important not only to
convey the information in the unsatisfiable core to humans,
but also to do so in contextually appropriate polite language.

Third, there may be advantages to more closely integrating
the task planner with DIARC. As mentioned above, planning
for complex tasks in uncertain and open worlds may require
the task planner to query the Goal Manager during the
planning process. For example, if a food preparation task
requires a cutting board, the planner may need to ask the
consultant framework which objects are cutting boards and
where the nearest one is, before it can plan to obtain a cutting
board. Likewise, it may be useful for the planner to request
human clarification between alternative plans, which would
involve DIARC’s natural language generation pipeline. Like-
wise, context information may be relevant to more DIARC
components than just the Goal Manager. Different contexts,
for example, might entail different speech norms that would
be relevant to pragmatic generation.

Fourth, prior work in socially-aware navigation and
human-robot proxemics [76], [77] identified the need for uni-
fied socially-aware navigation (USAN) methods for context-
sensitive long-term human-robot interaction in public places.
In future work, the social and moral norms activated in a
given context may be fed to a low-level social navigation
planner [78] to achieve context-sensitive social navigation.
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