
Amazon Echo Security: Machine Learning to
Classify Encrypted Traffic

Ryan Blake Jackson
Department of Computer Science

Colorado School of Mines
Golden, Colorado

Email: rbjackso@mines.edu

Tracy Camp
Department of Computer Science

Colorado School of Mines
Golden, Colorado

Email: tcamp@mines.edu

Abstract—As smart speakers like the Amazon Echo become
more popular, they have given rise to rampant concerns regarding
user privacy. This work investigates machine learning techniques
to extract ostensibly private information from the TCP traffic
moving between an Echo device and Amazons servers, despite
the fact that all such traffic is encrypted. Specifically, we
investigate a supervised classification problem using six machine
learning algorithms and three feature vectors. Our “request type
classification” problem seeks to determine what type of user
request is being answered by the Echo (again, even though
the requests are encrypted). With six classes, we achieve 97%
accuracy in this task using random forests.

I. INTRODUCTION

The Amazon Echo and Amazon Echo Dot (shown in Figure
1 and hereafter referred to as “Echo”) are smart speakers
designed and distributed by Amazon.com. Users interact with
the Echo via voice commands that are interpreted and carried
out by Amazon’s cloud-based intelligent personal assistant
service Alexa. Via Alexa, an Echo is capable of voice in-
teraction, music playback, making to-do lists, setting alarms,
streaming podcasts, playing audiobooks, acting as a home
automation hub, and providing weather, traffic and other real
time information [1].

Fig. 1. The Amazon Echo and Echo Dot [2].

As is common for emerging Internet of things (IoT)
technologies, the Echo has given rise to privacy concerns.
Historically, the level of privacy and security in collecting,
processing, and disseminating user information can make or
break an IoT innovation, and the consequences for inadequacy
in this aspect include non-acceptance of the technology in

question, damage to company reputation, and costly law
suits [3]. The most prevalent concerns pertain to Amazon’s
collection and treatment of Echo users’ recordings. The Echo’s
7 microphones with a consistent Internet connection make
it technically possible to continuously stream audio data to
Amazon’s servers. Thus, articles in popular publications have
drawn attention to concerns regarding Amazon’s ability to
eavesdrop on its users [4] [5] [6]. Amazon has attempted to
assuage these concerns by assuring users that, although the
Echo is constantly listening for its cue to activate (i.e., its
“wake word”), the only data sent to the cloud is the request
following the wake word and a few moments of recorded
sound immediately prior to the wake word’s detection. There
is also a physical mute button on the Echo device that disables
any form of listening [1].

A similar set of concerns stems from the possibility of
malicious third parties obtaining user data, either by gaining
access to the recordings saved on Amazon’s servers or by
intercepting information in transit between the Echo device
and the Alexa cloud service [4] [7]. Amazon guards against
this potential issue by encrypting all traffic between the Echo
and the server [7]. However, as discussed in Section III, the
fact that a network flow is encrypted does not necessarily mean
that all sensitive information is kept private. This study aims to
use machine learning techniques to extract information from
encrypted packets captured between the Echo and the Alexa
servers.

Specifically, this study investigates a classification problem
which we dub “request type classification”. The task is to
identify what type of request is being answered (e.g. requests
for music, weather, information, etc.) given the encrypted
packets coming from the Alexa cloud service to the Echo
device. These packets are Alexa’s response to the user’s
request. We note that request type classification pertains to
user privacy because it could be used to discern user identity
information by building large data sets of usage patterns for
specific users over time. Even in the absence of ground truthed
identity labels, such data would allow for anomaly detection in
usage patterns, thus revealing changes in household dynamics.

Section II presents a general overview of concepts necessary
to understand this work including machine learning, network
communication with the transmission control protocol, and

978-1-5386-5156-8/18/$31.00 ©2018 IEEE

encryption. Section III describes previous studies related to our
work. To the best of our knowledge, request type classification
with the Echo (or any similar device) has not been previously
explored in depth; however, we discuss other popular research
domains that bear similarities to this study. Section IV de-
tails the methods by which we investigated the request type
classification problem and our results. Finally, we offer some
concluding remarks and possible directions for future work in
Section V.

II. BACKGROUND

We begin with a brief overview of the supervised classifi-
cation algorithms that we use in Section IV. We then present
a high-level summary of the data paths involved in the Echo’s
functionality. We also provide a conceptual review of TCP
network traffic and encryption as they apply to this work.

A. Machine Learning

Supervised machine learning is the term for all algorithms
that reason from externally supplied instances to produce
general hypotheses, which then make educated conjectures
about previously unseen instances [8]. A machine learning
algorithm is said to be a classification algorithm when it seeks
to classify an object into a finite set of categories. All machine
learning techniques discussed in this work are supervised
classification algorithms. In short, supervised classifiers aim to
build a concise model of the class label distribution based on
features of the classifiable objects. This goal is accomplished
via training data for which the true classes are known. The
resulting classifier is then used to predict class labels for
instances of unknown class, and evaluated by various metrics
of efficacy in this task.

The aim of this study is to apply several notable classifica-
tion algorithms to discern the level of threat that intercepted
data pose to Echo user privacy. To that end, we investigate
the following six machine learning algorithms: C4.5 decision
trees, random forests, linear kernel support vector machines,
radial basis function kernel support vector machines, multi-
layer perceptron neural networks, and k-nearest neighbors
classification. In the following discussion, we briefly describe
each of these algorithms and justify their inclusion in our
work.

We begin with the decision tree, given its success in several
related works. The C4.5 decision tree algorithm generates
decision trees using the concept of information entropy in the
set of training data. At each node of the tree, C4.5 selects
the feature of the data that best splits the training samples
into subsets, such that the subsets predominantly represent
one class. In other words, the tree is built from the top down,
and, at each juncture, the tree splits on the attribute that gives
the highest normalized information gain. The algorithm then
recurs on the resultant subsets until some stopping criterion
is reached [8]. Typical stopping criteria include a maximum
depth for the tree or a minimum level of purity at each leaf.
New data are classified by following the appropriate path down
the tree from root to leaf.

Our second machine learning model, the random forest, is
an ensemble method. Machine learning ensembles combine
predictions from multiple base classifiers in an attempt to
achieve better predictive performance than any individual
classifier alone. The intuition behind these ensembles is that
each constituent base classifier is trained slightly differently
in the same task. We expect occasional errors from individual
classifiers, but we hope that their diversity allows the majority
to be correct despite a few misclassifications for any given
input. This idea is conceptually similar to humans making
important decisions by committee rather than leaving them
up to one individual, where all committee members share
a general goal. Random forests are ensembles of decision
trees. Each tree in the forest is trained on a random subset of
the training examples drawn with replacement. When training
each tree, each node considers only a proper subset of the
features. In other words, instead of simply splitting on the
feature that provides the highest normalized information gain,
the algorithm randomly selects a few features and then splits
on the best of those. Random forests are typically more robust
to overfitting than individual classifiers. They also generally
give error rates that compare favorably to those of other
ensemble methods like Adaboost, while being more resilient
to noisy data [9]. We include random forests in this study in
hopes of improving on the performance of individual decision
trees.

Our third machine learning algorithm, the support vector
machine, works by creating a linear decision surface in the
input space that separates training examples of different classes
by as large a margin as possible. A support vector machine can
perform non-linear classification by using a kernel function
to implicitly map input points to a higher dimensional space
before learning the linear decision boundary in this higher
dimensional space. In essence, this technique results in a non-
linear decision boundary in the input space. In this study,
we use both linear kernel support vector machines, which
do not map the inputs to a higher dimensional space, and
support vector machines with radial basis function kernels.
Although single support vector machines can only perform
binary classification, we perform multi-class classification by
training several support vector machines via the one-vs-one
method [10]. Using this method, we train n(n−1)

2 hyperplanes
to classify n possible classes. Studies have found the one-
vs-one method to be more effective in some applications than
other available methods (like one-vs-all) for multi-class classi-
fication with support vector machines [11]. We include support
vector machines in this work for their high generalization
ability demonstrated in other domains [12].

Recently, artificial neural networks have become extremely
fashionable within the machine learning community and pop-
ular culture [13]. Therefore, we include a form of artificial
neural network in this study. We use multi-layer perceptrons
instead of developing a novel neural network architecture
custom tailored to our specific data, as this work is primarily
exploratory and concerned with feasibility. Our multi-layer
perceptron networks are fully connected feed-forward net-

works trained via backpropagation. Within those constraints,
we optimize across several architectures and activation func-
tions as discussed in Section IV.

The final machine learning algorithm that we investigate is
the k-nearest neighbors (knn) classifier. In this method, any
given input is assigned the majority class of the k training
points nearest it based on some measure of distance (e.g.,
Euclidean or Manhattan). It is known that a simple majority
vote between the nearest k points can be flawed when there
are large class imbalances within the data; we avoid this issue
by collecting a perfectly balanced data set. We include knn
in this work for its simplicity, long-standing ubiquity, and the
fact that it has been proposed as a basic benchmark against
which to evaluate other classification methods [14].

B. Amazon Echo Data Paths

When a user makes a verbal request to the Echo, little of
the requisite computation takes place on the Echo’s hardware.
The Echo device simply listens for the wake word “Alexa”
and then streams the audio of the user request to Amazon’s
servers running the Alexa cloud service. Next, the Alexa
service interprets the user’s recorded speech and decides how
to respond. The response is sent to the Echo device and
delivered to the user via the speaker. At the same time, a
visual response is delivered from the Alexa service to the
user’s smartphone, tablet, or computer if it is running the
Alexa companion application. For example, in response to the
question “Alexa, who is Thomas Jefferson”, the Echo might
respond “Thomas Jefferson was the third president of the
United States of America” audibly through the speaker while
simultaneously delivering a link to Jefferson’s Wikipedia page
within the companion application. This described process is
depicted in Figure 2.

Fig. 2. The flow of data when using the Echo. This study focuses on the
paths labeled in red.

This work is specifically interested in the data moving
between the Echo device and the servers running the Alexa
cloud service. We seek to explore what ostensibly private
information an eavesdropping third party could infer by inter-
cepting these data. To that end, our data collection environment
essentially amounts to placing a computer between the Echo

and the servers that records all traffic passing through on its
way to its intended destination (see Figure 3).

Fig. 3. Our data collection environment places a gateway machine between
the Echo and the Alexa cloud service.

C. TCP Network Traffic

The Transmission Control Protocol (TCP) is a set of rules
that enables a connection between two computers and governs
the delivery of data over the Internet Protocol (IP). All
information transferred via TCP is separated into packets, and
each packet consists of a header and a payload. The header
is information for connection management, while the payload
is the actual data that needs to be transferred. When a device
needs to send data via TCP, it divides the data into chunks,
adds a TCP header to each chunk, encapsulates the chunk and
header into an IP datagram, and sends the resultant TCP/IP
packet on its way. A specific TCP data exchange begins with a
“handshake” between the two participants, e.g., the Echo client
and the Alexa server, and ends with a special flag called the
“FIN” flag that designates the accompanying data as the last
information from the sender. The Echo and the Alexa service
communicate with each other via TCP.

D. Encryption

Encryption is the practice of encoding data in such a way
that only authorized parties can understand it. All communica-
tions between the Echo and Amazon’s servers are encrypted. In
other words, the data payloads of the transmitted TCP packets
are purposefully obfuscated such that an eavesdropping third
party cannot glean any meaningful information by inspecting
them. Thus, deep packet inspection (DPI), i.e., the practice of
inspecting the data payloads of network packets, is not useful
here. We therefore use shallow packet inspection (SPI), i.e.,
the practice of examining packet headers and statistical infor-
mation regarding traffic patterns, to generate feature data for
our machine learning classifiers. Without encryption, it would
be trivial to discern all information traveling between the Echo
and Alexa. This work aims to discover what information we
can extract despite the encryption.

III. RELATED WORK

To the best of our knowledge, this study is the first to
use machine learning to glean information from Echo traf-
fic. One relatively popular research area that is related to
our work is termed the identification problem. This problem
consists of classifying encrypted web traffic. The interest in
this problem stems largely from its utility for surveillance,
network management, and security applications. For example,
a campus network might want to prevent online games from

hogging available bandwidth. The first step in doing so is
to separate game traffic from other traffic, even if the traffic
is encrypted. In this section, we discuss several papers that
have addressed versions of this problem, their relationships to
our research, and characteristics that differentiate our work
from this preexisting body of knowledge. We also briefly
describe existing work that concerns the Echo device, though
this previous research does not consider the associated network
traffic.

Li and Moore [15] investigated real-time encrypted traffic
classification for network monitoring and intrusion detection.
This study used individual TCP flows as the basic object
of classification, where flows were bi-directional sessions
between two participants uniquely identified by the host-IP
address, client-IP address, host port, client port, and timestamp
of the first packet. Li and Moore classified these flows into 10
general categories (such as mail and games) with 99.8% accu-
racy using a C4.5 decision tree. The data analyzed were two
consecutive days of real TCP network traffic from a research
facility of roughly 1000 employees. The input features for the
decision tree were derived from packet headers.

Li and Moore’s high accuracy is partially attributable to
favorable conditions not present in our Echo study. First,
although [15] states that the approach does not rely on port
numbers for classification, the client and server port numbers
were part of the input feature vectors. In fact, the server port
number was the most discriminative individual feature used.
We cannot consider port numbers to differentiate between
our classes of Echo communications, because the client and
server ports do not change with the class. Additionally, the 10
classes used by Li and Moore separate a wide range of traffic
into 10 general bins. We posit that the differences between
these general classes are more pronounced than the differences
between different requests to Alexa. Finally, though it is
convenient to consider TCP flows as defined by Li and Moore
as fundamental objects, there is not one TCP flow per Echo
request to Alexa.

The authors of [16] use a hybrid of the k-means clustering
algorithm and the k-nearest neighbors geometric classifier to
categorize 12 million flows from two Internet edge routers.
The classes in this work encompass general purpose network
functionality. Again, we expect that these classes are gener-
ally more disparate than ours. The authors’ hybrid algorithm
achieves classification accuracy between 94.0% and 99.9%,
depending on the traffic class. This performance is better than
the 83% average accuracy achieved by k-means clustering
alone. Furthermore, although the hybrid algorithm is less accu-
rate on average than the k-nearest neighbors algorithm, which
achieved an overall accuracy of 99.1%, the hybrid algorithm is
faster and can classify traffic in real-time. Also, this technique
uses only the packet headers to gather features, so it is invariant
to encryption. To emphasize this point, the authors show that
their algorithm is as accurate at classifying unencrypted Bit
Torrent peer-to-peer traffic as it is at classifying encrypted Bit
Torrent peer-to-peer traffic. The 17 features used in [16] are
associated with (1) the amount and rate of data transfer in each

direction and (2) the protocol used. We note that the authors
of [16] do not use the port numbers that Li and Moore found
valuable.

Much of the literature regarding the identification problem
builds upon the work of Moore, Zuev, and Crogan [17]. This
paper describes a comprehensive set of 248 features that can
be collected from TCP flows (with or without encryption)
and then used for classification. We cannot use their features
in our study because of the definition of a flow. TCP flows
have clearly defined starts and stops; however, as mentioned
previously, each Alexa request does not necessarily constitute
a single flow. Nonetheless, we draw inspiration from [17] when
selecting our own features.

The author of [18] used a subset of the features outlined in
[17] to compare several different machine learning techniques
in the task of classifying TCP flows by web application for the
16 most commonly used web services at the Air Force Institute
of Technology. In this work, the J48 decision tree (which is
an open source Java implementation of the C4.5 decision tree
algorithm) and AdaBoost+J48 were the two most successful
algorithms; both of these algorithms had a 98% classification
accuracy. The other machine learning algorithms evaluated in
[18] follow: support vector machine, Naive Bayes classifier,
and Naive Bayes tree. The success of the decision tree in
both [15] and [18] motivates our investigation of this method,
despite the differences between our data and the data used in
these studies.

A narrower version of the identification problem is investi-
gated in [19]. This study investigates AdaBoost, support vector
machines, Naive Bayes, C4.5 decision trees, and RIPPER
(Repeated Incremental Pruning to Produce Error Reduction,
a depth-first rule induction based algorithm) in the tasks of
identifying encrypted Skype or SSH traffic in large traces.
The authors of [19] found that the C4.5 decision tree was
the best algorithm. They achieved detection rates greater than
80%, with false positive rates less than 10%, for detecting both
SSH and Skype in four sets of data from different networks.
That is, the training data came from a different network than
the testing data.

A variant of the identification problem is presented in
[20]. This study attempts to distinguish between roughly
100,000 different web pages based solely on information that
is available to a third party intercepting packets from users
that accessed the websites via an encrypted channel. The
available information is essentially HTTP object count and
size. The authors discussed that a relatively straightforward
algorithm could identify many of the websites with low false
positive rates, barring significant padding to obfuscate the
actual website content.

An open source tool called “Pacumen” aims to solve the
identification problem through machine learning in a way
that requires less training data and is easier for network
administrators to use than the previously discussed academic
approaches [21]. Rather than classifying TCP flows as done by
the previously discussed studies, the authors in this work clas-
sify temporal windows of traffic. Each time window could be

the start, end, or middle of one or more flows. We can extract
similar features in our work with the Echo traffic. The authors
of [21] found top performance with decision trees, though
their custom version of a decision tree outperformed the more
common C4.5 tree on some of their data sets. The classes in
this study are similar to those in [18], though these authors
introduce the browser as a differentiator between classes. In
addition to introducing and evaluating their Pacumen tool, the
authors provide an example of a typical feature set for machine
learning in this domain. We draw inspiration from this typical
feature set in selecting our features.

The authors of [22] examined the Echo as a potential source
of forensically relevant digital information. They concluded
that the Echo serves primarily as a conduit for interfacing
with other services and were unable to obtain meaningful
information from the Echo device itself. Furthermore, the
only information discovered on the tablet running the Alexa
companion application was timestamps for the commands
given to Alexa and the responses to user commands. The
authors of [22] did not investigate the network traffic between
the Echo and the Alexa service, which is the focus of our
work.

IV. REQUEST TYPE CLASSIFICATION

This section describes our efforts to identify the type of
request being answered by Alexa using the encrypted packets
sent from the Alexa cloud service to the Echo device in
response to the user’s request. We begin our discussion by
describing our data set, and then cover our machine learning
processes and their results.

A. Our Data

We collected the data used in this problem via the data
capture environment described in Section II-B. An extensive
search did not discover any similar data sets available for use
in this research. We collected the following six classes of data
for this classification problem: information, quotes, weather,
directions, music, and unintelligible. We collected 130 exam-
ples of each class for a total of 780 packet capture files. The
information class is comprised of questions of the form “Alexa,
who is Thomas Jefferson?” We used 130 different names to
add diversity to the data set and avoid any effects of possible
server-side caching. Each user request in the quotes class is
“Alexa, give me a quote.” The 130 responses from the Alexa
servers are all unique. The weather class questions have the
from “Alexa, what is the weather in Paris?” with 130 different
places cited. The music class is comprised of 130 different
song samples. User requests in the music class have the form
“Alexa, play me a sample of Hey Jude by The Beatles” with
130 different pairs of song title and artist. The user requests
for directions have the form “Alexa, get me directions to the
Home Depot.” When collecting data in the directions class,
we noticed a perceptible difference in response time based
on our proximity to the location in question. For example,
when collecting data in Golden, Colorado, the request “Alexa,
get me directions to the Colorado School of Mines” would

receive a reply markedly more quickly than “Alexa, get me
directions to Anchorage, Alaska”. To avoid this variation in
response time and collect data in keeping with what we believe
to be the typical use case for the direction functionality, we
relegated our direction requests to places within roughly a 30
minute drive from our data collection environment. While we
were not aware of 130 different such places, over half of our
requests contain unique locations and we varied their order to
avoid server-side caching. We also note that traffic information
changes over time, so two direction responses from Alexa to
the same location are likely different. Thus, we believe that
server-side caching was not taking place. The user requests in
the unintelligible class are 130 unique, linguistically invalid
sentences including nonsense words. Alexa’s responses to the
unintelligible requests, though varied, are along the lines of
“Sorry, I didn’t quite catch that.”

We use 80% of each class (104 examples) for training our
machine learning models and 20% of each class (26 examples)
for testing the models. Our train/test splits are computed
randomly, so the individual data points that end up in a given
data set (training and testing) vary across different train/test
splits. However, we always use stratified train/test splits which
means that the proportion of each class in the training data is
always the same as the proportion of that class in the testing
data. Since we collected the same number of examples of each
class, the classes are always represented equally in the training
and testing data.

B. Feature Extraction

Inspecting our data revealed that each request response pair
between the user and the Echo does not necessarily correspond
to a TCP flow as defined by [15], [16], [17], and [18].
Though the correspondence is TCP traffic, it is not punctuated
by the starts and stops that create a flow. We also did not
observe a strictly one-to-one correspondence between requests
and flows when collecting traffic bidirectionally. Thus, the
tools discussed in [17] are not useful. We therefore turn to
other feature vectors. We extract single feature vectors from
entire packet capture files, where each file corresponds to one
request/response. In this study, we investigate three different
sets of features: “tcptrace”, “histogram”, and “combined”.
Sections IV-B1, IV-B2, and IV-B3 describe these three types
of feature vectors.

Some machine learning algorithms, e.g., support vector
machines, assume input data features with zero mean and
unit variance. To accommodate such algorithms on all three
of our feature sets, we fit a transform on the training data that
standardizes each feature to zero mean and unit variance, and
then apply that transform to both the training and testing data
sets.

1) tcptrace Feature Vector: Our first feature vector is
called “tcptrace” because the feature extraction code leverages
a tool called “tcptrace” to create statistical features from
packet capture files [23]. We manipulate these features into
a numerical vector form that is amenable to typical machine
learning algorithms. We believe that these tcptrace features

are similar to the “typical” feature set described in [21],
with additional information. Of the 35 tcptrace features, 13
were useless in our study because they were constant for all
collected data. The 13 discarded values follow: sack pkts sent,
dsack pkts sent, max sack blks/ack, zwnd probe pkts, zwnd
probe bytes, SYN/FIN pkts sent, urgent data pkts, urgent data
bytes, zero win adv, stream length, missed data, truncated data,
and truncated packets. A full list of tcptrace features with
descriptions is available at [23].

2) Histogram Feature Vector: We call the second feature
vector that we create from each packet capture file a “his-
togram” feature vector. The first half of the features in this
vector come from a normalized histogram of packet sizes. We
create this histogram based on a parameter-specified number
of bins that evenly divide the interval between the size of
the smallest packet in our data set and the size of the largest
packet in our data set. Then, for each packet capture file, the
histogram is created by calculating the number of packets
that fall into each bin. Finally, the histogram is normalized
to remove any information regarding the total number of
packets in the packet capture file. Each feature in our vector,
then, corresponds to the value in one bin of the histogram.
The second half of the features in the vector come from
another normalized histogram calculated in the same manner,
but with packet interarrival times instead of packet sizes.
Both histograms use the same number of bins. For example,
given 15 bins, the resultant feature vector would contain 30
features, 15 for the packet size histogram and 15 for the packet
interarrival time histogram.

The rationale behind this histogram feature vector is
twofold. First, we wanted features that captured packet size
information, especially relative frequencies of different packet
sizes, since this type of information is not present in the
tcptrace features. Second, we wanted a feature vector that
contained no information regarding the total number of packets
or the total amount of information transmitted in a packet
capture file. Having such a feature vector allows us to verify
whether classification is possible without knowing the number
of packets or number of bytes in a request/response pair.

We consider the histogram feature vector both with and
without ACK packets. Discarding the ACK packets is mo-
tivated by the idea that we are interested only in the sizes of
the data payloads, and including ACK packets would skew
the packet size histogram towards smaller sizes, which could
obfuscate subtler information in the bins containing larger
packet sizes. However, we also consider the feature vector
with ACK packets just in case they provide some valuable
information.

We also seek to optimize the number of bins for this feature
vector. Table I shows how a random forest classifier performs
with various bin sizes. We see that, for every number of bins
under 200, more bins yields better results. However, we see
drastically diminishing returns after 15 bins, especially without
ACK packets. To keep computational costs to a reasonable
level, we used 15 bins for our histogram feature vectors
in the remainder of our work. This decision reduced the

TABLE I
MEAN ACCURACY FOR A 400-TREE RANDOM FOREST USING THE

HISTOGRAM FEATURE VECTORS WITH VARIOUS BIN SIZES BOTH WITH
AND WITHOUT ACK PACKETS. AVERAGED OVER 100 RANDOM

STRATIFIED TRAIN/TEST SPLITS.

Bins Mean Accuracy with
ACK Packets

Mean Accuracy without
ACK Packets

5 85.16 82.01
10 90.59 88.00
15 92.34 93.21
25 92.40 93.25
50 92.97 93.30
100 93.92 93.96
200 92.72 93.87

experimental runtimes on our hardware by durations up to
hours, which allowed us to cover more exploratory ground than
would otherwise have been feasible. We provide the histogram
features without ACK packets for the remainder of this thesis
because discarding ACK packets gave better performance on
our chosen number of bins (15).

3) Combined Feature Vector: Our third and final feature
vector, which we dub “combined”, is the tcptrace features
combined with the histogram features. We included the com-
bined vector in this study in hopes that each constituent feature
vector would contribute some unique information allowing
for better classification performance than either of the two
constituent feature vectors alone.

C. Results

We noticed significant variation in our results that depended
on how the data were divided into training and testing sets.
For that reason, and because several of our machine learning
algorithms include some stochasticity, presenting results based
on a single trial of each algorithm with a single set of training
data and a single set of testing data could be misleading.
Thus, instead, we present the aggregated results of 100 trials
with random stratified train/test splits. In each trial, we used
stratified 3-fold cross validation to tune salient model hyper-
parameters via a grid search over possible hyper-parameter
values. We do not tune hyper-parameters on testing data, as
doing so would overestimate model efficacy. We note, how-
ever, that the chosen hyper-parameters are not always the same
in each trial. We believe our chosen method provides a more
thorough and accurate evaluation of our models than would
be possible with the more common single-trial approach.

We leveraged the algorithmic implementations of Scikit-
learn [24] for the six machine learning models evaluated.
Table II presents our accuracy results for each of our three
feature vectors with the different machine learning algorithms
considered. We treat accuracy as our metric of interest for
several reasons. First, our data set is perfectly balanced, i.e., no
one class appears more often than any other (we collected 130
examples per class). Therefore, metrics that account for class
imbalances (e.g., F1-score) are unnecessary. We did, however,
evaluate F1-score and found the result extremely close to, or
identical to, accuracy. Second, no one type of prediction error

TABLE II
ACCURACY RESULTS FOR 100 TRIALS WITH DIFFERENT TRAIN/TEST

SPLITS FOR OUR SIX MACHINE LEARNING ALGORITHMS ON OUR THREE
DIFFERENT FEATURE VECTORS. HIGHEST ACCURACY RESULTS ARE IN

BOLD.

Feature
Vector

Model Mean
Accuracy

Standard
Deviation

Median
Accuracy

Decision Tree 95.69 1.58 95.51
Random Forest 96.87 1.34 96.79
SVM (linear) 94.01 1.68 94.23
SVM (RBF) 94.03 1.69 94.23

Neural Net (MLP) 94.24 1.57 94.23

tcptrace

KNN 94.08 1.84 94.23
Decision Tree 87.05 2.29 87.18

Random Forest 93.23 1.82 93.27
SVM (linear) 86.89 2.31 87.18
SVM (RBF) 87.91 2.31 87.82

Neural Net (MLP) 88.15 2.36 88.46

Histogram

KNN 88.87 2.09 89.10
Decision Tree 95.42 1.68 95.51

Random Forest 97.01 1.14 97.44
SVM (linear) 96.12 1.47 96.15
SVM (RBF) 95.56 1.23 95.51

Neural Net (MLP) 95.07 1.44 95.19

Combined

KNN 95.72 1.71 95.51

is more costly than any other. Thus, we treat all errors as
equally costly and have no need for weighting. For the sake
of thoroughness, we present confusion matrices for our highest
performing algorithm for each feature vector in Figures 4, 5,
and 6.

Table II shows that the random forest is the best performing
classifier for our three feature vectors. We note that, for each
feature vector, the difference between the random forest mean
accuracy and the mean accuracy of the second best algorithm
is statistically significant with p < 0.0001. Furthermore,
the combined feature set provides the best result, while the
histogram feature vector performs the worst. The difference
in the accuracy means for the random forest using tcptrace
features versus histogram features is statistically significant
with p < 0.0001, as is the difference in accuracy means for
random forest using the combined feature vector versus the
histogram features. However, the difference in accuracy means
for the random forest using the combined feature vector versus
the tcptrace features gives p = 0.427, and the 95% confidence
interval for the difference is -0.4869% to 0.2069%. These
statistics indicate that using a random forest with the tcptrace
features alone is essentially equivalent to using a random forest
with the combined features.

The confusion matrices in Figures 4, 5, and 6 provide
details on the best performing classification algorithm (random
forest) for each feature vector. The most often misclassified
class is information. Regardless of the feature vector used, the
information class is often mistaken for weather. Furthermore,
when misclassifying, the classifier tends to erroneously predict
information for examples belonging to all of the other classes
except music. The music class is always classified correctly,
and samples from other classes are rarely mistaken for music.
Intuitively, this result makes sense because the musical output
is fundamentally different in nature from the speech output

of the other five classes. In Section V, we discuss ideas for
adding other classes that are similar to the music class.

Fig. 4. Confusion matrix averaged over 100 different train/test splits for
random forest using tcptrace feature vectors.

Fig. 5. Confusion matrix averaged over 100 different train/test splits for
random forest using histogram feature vectors.

Fig. 6. Confusion matrix averaged over 100 different train/test splits for
random forest using the combined feature vectors.

D. Machine Learning Algorithm Hyper-parameters

For the decision tree, the only hyper-parameter we tune
is whether to use Gini impurity or information gain as the
splitting criterion. We require full purity in all leaves as the
stopping criterion. With the separate tcptrace and histogram
feature vectors, we found that Gini impurity and information
gain are essentially equivalent. The combined feature vectors
showed a higher preference for information gain, with 69 trials
selecting information gain and only 31 trials selecting Gini
impurity.

For the random forest classifier, we always use 400 trees. We
believe that 400 trees is sufficient because our results did not
differ in any statistically significant way with 500 trees. We use

full leaf purity as the stopping criterion in building the decision
trees that comprise the random forest. We again use cross
validation to choose between Gini impurity and entropy as
the splitting criterion for each trial. The separate tcptrace and
histogram feature vectors showed a slight preference for Gini
impurity, while the combined feature vector showed a slight
preference for entropy. In regards to the number of features
to consider at each node, we test both the square root of the
total number of features and the log base 2 of the total number
of features. We found the square root of the total number of
features is selected more often for all three of our feature
vectors.

For the support vector machine with linear kernel function,
the only parameter that we tune is the penalty parameter of the
error term, often dubbed “C”. The parameter C governs the
trade-off between finding a hyperplane that correctly classifies
as many training points as possible, and finding a hyperplane
that generally has a large margin between separate classes,
even if that means allowing some misclassifications in training.
High values of C prioritize correctly classifying all training
points, but, if C is too large, the learned hyperplane may
overfit the training data by being too sensitive to outliers
during training. Low values of C prioritize a large-margin
hyperplane, even if some training points are misclassified.
However, if C is too small, the learned hyperplane will need-
lessly misclassify many points (even with linearly separable
data) because misclassifications are not sufficiently penalized.
We test the values 0.1, 0.5, 1.0, 5.0, and 10.0 for C. We found
the best cross validation performance on tcptrace features with
higher values of C, with C = 5 or C = 10 being selected in 30
and 28 trials respectively. There was a preference for C = 1
and C = 0.5 on the histogram features, with those values
being chosen in 34 and 37 trials respectively. Lower values
of C proved to be better for the combined feature set, with
C = 0.1 and C = 0.5 chosen in 53 and 38 trials respectively.
Perhaps greater outlier presence in the combined features made
the support vector machine more prone to overfitting with high
values of C.

For the support vector machine with a radial basis kernel
function, we tune the kernel coefficient gamma in addition to
the penalty parameter C. For all feature vectors, the most often
optimal value for gamma is 1 over the number of features.
There is also a pronounced tendency toward higher values of
C (5.0 and 10.0) for all feature vectors.

It was infeasible for us to explore the entire hyper-parameter
space for neural networks in this study due to the numerous
architectural choices and various other quantitative hyper-
parameters. We chose to restrict our tuning to three multi-
layer perceptron architectures: 1 hidden layer with 100 nodes,
1 hidden layer with 300 nodes, and 2 hidden layers with
100 nodes each. We did evaluate both the logistic sigmoid
and rectified linear unit activation functions. The rest of the
hyper-parameters are set to the Scikit-learn defaults [24]. We
found that the different hidden layer architectures do not seem
to matter. The rectified linear unit function is chosen as the
superior activation function in the vast majority of trials for

all feature vectors.
For k-nearest neighbors classification, the hyper-parameters

that we tune are k (the number of neighbors to consider),
whether to weight the neighbors based on their distance to the
point being classified, and whether to use the Manhattan or
Euclidean distance for this weighting. The tcptrace and his-
togram feature vectors both result in a preference for weighting
points by the Manhattan distance, while the combined feature
vector showed a preference for considering the neighbors
unweighted. For the tcptrace features, k = 3 and k = 5 are
the preferred values, chosen in 37 and 24 trials respectively.
Cross validation tends to select k = 5 for the other two feature
vectors (in 46 trials for the histogram features and 50 trials for
the combined features). The second most common value of k
for both the histogram features and the combined features was
k = 3, selected in 20 cross validation trials for the histogram
features and 35 trials for the combined features.

E. Relative Importance of Features

Once trained, random forest classifiers can give information
about the relative discriminative power of each input feature
by calculating the mean decrease impurity for each feature.
The impurity decrease at any given node for the feature on
which it splits is the impurity of the data that arrived at the
node minus the summed impurities of all child nodes. The
mean decrease impurity for any given feature is the average
impurity decrease over all nodes within the forest that split on
that feature, weighted by the amount of data that reaches each
relevant node. The greater a feature’s mean decrease impurity,
the more discriminative that feature is. Due to the various
stochastic elements of our random forest training process, the
mean decrease impurities for each feature are not consistent
across different trials or different train/test splits. Despite this
inconsistency, we can observe trends that exist regardless of
the stochasticity.

The most important tcptrace features are those pertaining
to the window advertisement. Using only the window ad-
vertisement features, the random forest algorithm achieves
a mean accuracy of 91.92%. In TCP communication, the
window advertisement is basically one party telling the other
how much data it is willing to receive per unit time. Since
our data for this request type classification problem consists
of packets coming from Amazon’s servers to the Echo, the
window advertisements specify how much data the server is
willing to receive from the Echo. One reason why the music
class is so easy to identify is that its window sizes are typically
about ten times smaller than the window sizes in the other
five classes. Based on changes in the source IP address, we
hypothesize that the servers responsible for streaming music to
the Echo are different from the servers that receive, interpret,
and respond to Echo voice recordings. We consistently observe
a change in server IP address when the response shifts from
speech (e.g., “Here is a sample of No One by Alicia Keys”) to
music. The music streaming servers are likely not expected or
equipped to receive much data from the Echo, so they advertise
a small window. It is not clear why the window advertisements

differentiate the five non-music classes so well. Since we
collected our data one class at a time, it is possible that
each class has different window advertisement characteristics
because the server was under a different load when each class
was collected. We do not believe this hypothesis to be the case,
however, both because of significant variability in average
window advertisement within classes (1013 bytes to 20576
bytes within the information class), and because of similar
average window advertisements across classes (many window
advertisements of roughly 4500 bytes appear in all classes
except music and directions).

A metric that quantifies the amount of data observed is also
typically in the top five tcptrace features, including unique
bytes sent, actual data packets, and actual data bytes. If we
use only features quantifying the amount of data (i.e., total
packets, unique bytes sent, actual data packets, and actual data
bytes), the random forest algorithm achieves a mean accuracy
of 86.92%. In other words, while features quantifying the
amount of data are useful, they are not sufficient to achieve
peak performance. Though no feature had a mean decrease
impurity of zero, the features pertaining to data and packet
retransmission are the least important.

For the histogram features, the packet size features are
typically more important than the packet interarrival time
features as indicated by greater impurity decreases. With
only the interarrival time histogram, the mean random forest
accuracy is 43.85%. Manuel inspection of the interarrival
time histogram data shows that the music class generally has
longer packet interarrival times than the other five classes.
Although we were unable to differentiate between the five
non-music classes by manually inspecting the raw interarrival
time data, the random forest was able to distinguish them
with higher accuracy than random guessing; that is, if the
algorithm had correctly classified only music and then guessed
between the five non-music possibilities for the other five
classes, we would expect only 33.33% accuracy. On the other
hand, when the random forest algorithm only uses the packet
size histogram, the mean random forest accuracy is 92.53%
with a standard deviation of 2.01%. The difference between
this result and the 93.23% result in II (which includes the
whole histogram feature vector) is statistically significant with
a 95% confidence interval of -1.23% to -0.17%. However, the
closeness of these two results indicates that the histogram
feature vector performs almost as well without considering
the interarrival times. We do not see any discernible pattern to
the impurity decrease for the individual features (bins) within
each histogram.

As one might expect from the results discussed previously,
the mean decrease impurity calculations for the combined fea-
ture vectors indicate that the most important tcptrace features
are the most important features overall. Similar to the separate
tcptrace and histogram feature sets, the least important fea-
tures in the combined feature vector are the tcptrace features
related to data retransmission and the packet interarrival time
histogram features.

V. CONCLUSIONS AND FUTURE WORK

The goal of our research was to extract ostensibly private
information from the encrypted TCP traffic flowing between
the Amazon Echo and the Alexa cloud service. Because
the transmissions are encrypted, we must rely on shallow
packet inspection techniques. Specifically, our request type
classification problem consists of classifying the encrypted
information coming from the Alexa cloud service to the Echo
device by the type of user request that is being answered. This
task is conceptually similar to the well-studied “identification
problem” on general purpose network traffic. We designed a
data capture environment and collected six classes of data. Our
classes are information, quotes, weather, directions, music, and
unintelligible. We extracted three different feature vectors from
the captured packets in this research. While all three feature
vectors proved to be valuable, we found the combined feature
vector yielded slightly better request type classification perfor-
mance than the tcptrace feature vector. We tested six machine
learning algorithms after tuning their hyper-parameters via 3-
fold cross validation, and found that the random forest algo-
rithm performed the best in this application, achieving 97.01%
accuracy averaged across 100 different train/test splits using
the combined feature vectors. We use our random forests to
report on the relative importance of our different features based
on their mean impurity decreases. The most important features
concern the window advertisements. Overall, we believe that
this result on the Amazon Echo constitutes a credible threat
to user privacy.

A. Improving Generalizability Across Networks and Users

In a real eavesdropping scenario, the eavesdropper would
likely not have, nor be able to obtain, labeled training data
of the people using the Echo on the target’s home network.
Instead, the eavesdropper would need to collect a labeled
training data set on their own network(s), train a machine
learning model with it, and then use this model to classify data
from the target’s network. Therefore, to present a real threat,
our techniques must perform well when applied to a previously
unseen network. Our techniques must also generalize between
Echo users; the way that one person asks for information
might be sufficiently different from the way that another
person asks for the same information to meaningfully impact
Alexa’s response, at least in timing if not in content. Our
results from informal, preliminary experiments on this topic
necessitate further research, but do not negate the threat that
exists to Echo user privacy. Specifically, we would like to
train machine learning models on data from many different
networks and users, and then evaluate the models on new
networks and users. We believe our techniques have the
potential to generalize well across networks and users.

B. Building Data Sets of Usage Patterns

Our success with request type classification in Section IV
opens the door for several avenues of future research. We
would like to collect large data sets of people using the Echo
in their homes over several weeks or months. We would

then explore feature extraction and machine learning on the
collected usage patterns. We could investigate how well the
usage patterns identify specific households. A trivial example
would be that household A asks for weather at 8:00 every
morning, while household B routinely asks for music at that
time. Applying clustering techniques to this data set could
reveal interesting behavioral groups of households. Applying
anomaly detection techniques to this data set could allow us
to detect changes in household dynamics (e.g., divorce or a
child moving away to college), which would also constitute
a privacy violation. We would also like to investigate how
personal usage patterns could identify individuals within a
household.

The first step in investigating the topics in the previous
paragraph would be to expand the set of request type classes to
be as comprehensive as possible. Our six classes cover a large
portion of the Echo’s functionality, but they are not exhaustive.
We could add, for example, classes for shopping and listening
to podcasts. We believe that the podcast data might be similar
to the music data, which would test our classification process
well. We could also include a catchall “other” class for any
overlooked request types that do not belong in another class.
With these added classes, we would collect data that represents
the typical Echo user.

C. Exploring Similar Devices

The consumer options for virtual assistant smart speakers
are rapidly increasing as many companies work to earn a share
of the emerging smart speaker market. The Google Home is
a product similar to the Echo that is already on the market
[25]. Samsung and Apple are poised to release their own smart
speakers in 2018 [26] [27]. With so many similar products
competing for essentially the same customers, differences in
security could play a significant role in consumer choices. We
believe that a comprehensive study comparing how vulnerable
these products are, both to the techniques developed in this
study and to other potential threats to user privacy, could be
valuable to conscientious consumers.

REFERENCES

[1] “Amazon Echo product page,” https://www.amazon.com/dp/
B00X4WHP5E, access date: April 18th, 2018.

[2] M. Hughes, “The Amazon Echo and Echo Dot are coming to
the UK and Germany,” https://thenextweb.com/gaming/2016/09/14/
the-amazon-echo-and-echo-dot-are-coming-to-the-uk-and-germany/#.
tnw dz0yAwD8, 2016, access date: April 18th, 2018.

[3] J. H. Ziegeldorf, O. G. Morchon, and K. Wehrle, “Privacy in the
Internet of things: Threats and challenges,” Security and Communication
Networks, vol. 7, no. 12, pp. 2728–2742, 2014.

[4] S. Baral, “Amazon Echo privacy: Is Alexa listening
to everything you say?” https://mic.com/articles/162865/
amazon-echo-privacy-is-alexa-listening-to-everything-you-say#.
1mt6eZ2WS, access date: April 18th, 2018.

[5] C. Davies, “How private is Amazon Echo?” https://www.slashgear.com/
how-private-is-amazon-echo-07354486, 2014, access date: April 18th,
2018.

[6] S. Machkovech, “Amazon announces Echo, a $199 voice-
driven home assistant,” https://arstechnica.com/gadgets/2014/11/
amazon-announces-echo-a-199-voice-driven-home-assistant, 2014,
access date: April 18th, 2018.

[7] T. Moynihan, “Alexa and Google Home record what you say,
but what happens to that data?” https://www.wired.com/2016/12/
alexa-and-google-record-your-voice/, 2016, access date: April 18th,
2018.

[8] S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, vol. 31, pp. 249–268, 2007.

[9] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32,
2001.

[10] S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited:
a stepwise procedure for building and training a neural network,”
Neurocomputing, vol. 68, pp. 41–50, 1990.

[11] M. Pal, “Multiclass approaches for support vector machine based
land cover classification,” Computing Research Repository (CoRR),
vol. abs/0802.2411, 2008. [Online]. Available: http://arxiv.org/abs/0802.
2411

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer,
2009.

[14] D. Coomans and D. Massart, “Alternative k-nearest neighbour rules in
supervised pattern recognition: Part 1. k-nearest neighbour classification
by using alternative voting rules,” Analytica Chimica Acta, vol. 136, pp.
15–27, 1982.

[15] W. Li and A. W. Moore, “A machine learning approach for efficient
traffic classification,” Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, 2007.

[16] R. Bar-Yanai, M. Langberg, D. Peleg, and L. Roditty, “Realtime clas-
sification for encrypted traffic,” Proceedings of the 9th International
Conference on Experimental Algorithms (SEA’10), pp. 373–385, 2010.

[17] A. W. Moore, D. Zuev, and M. L. Crogan, “Discriminators for use in
flow-based classification,” Queen Mary and Westfield College, Depart-
ment of Computer Science, Tech. Rep., 2005.

[18] W. C. Barto, “Classification of encrypted web traffic using machine
learning algorithms,” Department of the Air Force, Air University, 2013,
http://www.dtic.mil/get-tr-doc/pdf?AD=ADA585816 Access date: April
18th, 2018.

[19] R. Alshammari and A. N. Zincir-Heywood, “Machine learning based
encrypted traffic classification: Identifying SSH and Skype,” Proceedings
of the IEEE Symposium on Computational Intelligence for Security and
Defense Applications (CISDA), 2009.

[20] Q. Sun, D. Simon, Y. Wang, W. Russell, V. Padmanabhan, and L. Qiu,
“Statistical identification of encrypted web browsing traffic,” Proceed-
ings of the IEEE Symposium on Security and Privacy, 2002.

[21] B. Neimczyk and P. Rao, “Identification over encrypted channels,”
BlackHat USA, 2014.

[22] C. C. L. C. for Digital Investigation, “Amazon Echo foren-
sics,” https://lcdiblog.champlain.edu/wp-content/uploads/sites/11/2016/
05/EDITED Amazon Echo Report-1.pdf, 2016, access date: April
18th, 2018.

[23] S. Ostermann, “tcptrace,” http://www.tcptrace.org/, 2003, access date:
April 18th, 2018.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] A. Gebhart, “Google home review,” https://www.cnet.com/products/
google-home/review/, 2017, access date: April 18th, 2018.

[26] Z. Hall, “Homepod: Everything we know about the Apple
smart speaker so far,” https://9to5mac.com/2017/11/14/
homepod-siri-speaker-launch-details/, 2017, access date: April 18th,
2018.

[27] M. Gurman, “Samsung targets first half of 2018 for smart
speaker,” https://www.bloomberg.com/news/articles/2017-12-14/
samsung-is-said-to-target-first-half-of-2018-for-smart-speaker, 2017,
access date: April 18th, 2018.

