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Abstract—As earth dams and levees (EDLs) across the United
States reach the end of their design lives, effectively monitoring
their structural integrity is of critical importance. This paper
investigates automatic detection of anomalous events in passive
seismic data as a step towards continuous real-time monitoring
of EDL health. We use a multivariate Gaussian machine-learning
model to identify anomalies in experimental data from two
different laboratory earth embankments. Additionally, we explore
five wavelet transform methods for signal denoising; removing
different signal components. The best performance is achieved
with the Haar wavelets (removing the Level 3 component). We
achieve up to 97.3% overall accuracy and less than 1.4% false
negatives in anomaly detection. These promising approaches
could eventually provide a means for identifying internal erosion
events in aging EDLs earlier than is currently possible, thereby
allowing more time to prevent or mitigate catastrophic failures.

I. INTRODUCTION AND MOTIVATION

Earth Dams and Levees (EDLs) are essential for flood
control, water storage, and irrigation. They are built using
earthen materials such as rock, sand, and clay [1]. Many earth
dams in the U.S. are over 60 years old and reaching the end
of their design lives [2]. Thus, it is necessary to find ways to
monitor the stability of these structures. The main causes of
EDL failures are piping, slope instability, foundation issues,
and overtopping [3] and internal erosion is actually the root
cause of many of these failure mechanisms. Currently, failure
detection methods rely on visual inspection of the surface of
an EDL by human experts, which does not guarantee finding
a problem early enough to prevent collapse. Figure 1 shows
the result of a catastrophic failure of the Algodes I Dam in
Brazil [4] during the Spring of 2009, which was previously
deemed safe by engineers. A reported 50-meter hole opened
in the dam, which submerged the city of Cocal da Estacão,
with 30,000 inhabitants, under 20 meters of water. The results
included more than seven fatalities, power outages, roads being
completely washed away, and the destruction of more than
500 homes, which left more than 3,000 people homeless. Dam
failure is a worldwide problem and early detection is critical.
Our study focuses on using geophysical sensor technologies
and machine learning methods to detect anomalous erosion
events before they progress to failure.

We have investigated anomaly classification using unsu-
pervised clustering algorithms [5] and the ability to separate
normal from anomalous data observations using support vector
machines [6]. Now, we take a step forward to an anomaly
detection approach that could be used for the continuous real-
time monitoring of earth dams and levees.

Fig. 1: The Algodes I Dam, Piaui, Brazil after it burst (top), the city
of Cocal that was flooded (middle), and the aftermath including roads
completely washed away (bottom) (figure adapted from [4]).

II. BACKGROUND AND RELATED WORK

Anomaly detection aims to identify data observations that
differ from the normal or expected pattern. Our goals necessi-
tate the development of an anomaly detection scheme that can
perform well despite the limited availability of ground-truth
information and the large class imbalance present in many
EDL datasets. With our multivariate Gaussian approach, we
can train models on data that represent the normal state of the
levee and subsequently detect deviations within a threshold;
thus eliminating the need for levee specific labeled data.

Chandola et al. [7] separate the different anomaly detection
techniques into: classification, clustering, nearest neighbor,
statistical, information theoretic, and spectral. The various
methods output either scores to select anomalies using an
appropriate threshold or labels to identify anomalies versus
the normal data observations. Anomaly detection has been
used to investigate many real-world problems, such as fraud
detection in finances [8] and insurance [9], intrusion detection
in computer networks [10], image analysis in motion [11] and
hyperspectral [12], and bioinformatics cancer gene analysis
[13]. Our scheme uses a novel statistical-based anomaly de-
tection workflow to differentiate normal seismic signals from
anomalous internal erosion events in EDL passive seismic data.
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Researchers from the University of Amsterdam have de-
tected anomalies in earth levees from sensors installed inside
the structures (e.g., temperature, pore water pressure, relative
inclination) using a neural-cloud approach [14]. Mississippi
State University researchers experimented with unsupervised
and supervised methods to detect anomalies [15] and classify
levee slides in synthetic aperture radar data [16], [17] along
the Mississippi River using support vector machines. However,
to our knowledge, our research is the first that uses machine
learning for the automatic detection of anomalous internal
erosion events in passive seismic EDL data. Our approach
investigates detecting anomalous erosion or crack events using
geophysical data collected from small sensors installed on the
surface of the levee. By using surface sensors rather than
sensors inside of the dam, we can implement an early warning
system without damaging the integrity of the EDL structure.

III. EXPERIMENTAL DATA

Two different passive seismic data sets from experimen-
tal earth embankments built at the United States Bureau of
Reclamation (USBR) [1] were used during our experiments.
The two data sets included different types of internal erosion
events (e.g., cracking and piping).

A. Crack-Box Testbed

The crack-box data set is described in detail in previous
work [5]. The data was collected from an experimental lab-
oratory earth embankment that was built at the USBR and
brought to failure to study internal erosion and cracking [18].
A hinged joint at the bottom centerline of the structure was
used to induce the cracking in 0.5 cm and 1.0 cm increments.
Figure 2 shows the initial state of the structure and the result of
a 2.5 cm crack. The embankment was equipped with various
geophysical instrumentation including a vertical array of 12
geophones that collected data at 500Hz for several days.

Fig. 2: Images from laboratory earth embankment structure built at
the USBR (left) and result of a 2.5 cm induced crack (right).

We were provided with 4,140 seconds of passive seismic
data for our experimentation that includes many events of
crack, pump, and flow (30% normal or baseline activity and
70% anomalous events). We use the first third of our data for
training our model since it is more representative of real-world
conditions, with 80% normal data and 20% anomalous data.

B. Piping Experiment

The second data set is from an internal erosion and piping
experiment also conducted at the USBR and described in
detail in [19]. The structure was equipped with geophysical
instrumentation and built with a long rebar embedded on

the lower left side that was later removed to induce the
piping event. Figure 3 shows a cross-sectional view of the
experimental levee and piping activity after the rebar was
removed and subsequent result of erosion activity.

Fig. 3: Experimental earth embankment built at the USBR showing
cross-section result of a piping induced by the removal of the rebar
(left) and result of significant erosion of materials from piping (right).

The data provided was sampled at 500Hz and included
several baseline testing and noise events (e.g., setup of sensors,
adjustment of equipment, hammer strikes, nearby machinery,
and pumping of water into the reservoir). We focus on the
events after the reservoir was filled and use the section of data
that closely mimics a real-scenario of the initiation of a pipe,
major water flow, and subsequent internal erosion events (80%
normal or baseline data and 20% anomalous data).

There are several crack events clearly visible from the
raw signal data. Despite this, the naive approach of simply
flagging any large spike in amplitude as anomalous cannot
be sufficient in this application for several reasons. First, we
must keep in mind that this data was collected in artificial
conditions, and, while there is some noise in the signals, we
expect even more noise in real conditions (as the dams are
exposed to tidal changes, weather, foot and vehicular traffic,
and other irrelevant sources of vibration). Such circumstances
are unavoidable, and our early warning system should view
them as normal. Second, we seek to detect not only violent
crack events, but also internal erosion events like piping (as
seen in the second data set). These do not necessarily generate
amplitude spikes in the signal data, especially during their
incipient stages, but we still aim to detect them as early as
possible. For these reasons, we consider features other than
just amplitude in producing our model (see Section IV-C).

IV. PREPROCESSING

There are preprocessing steps needed before we can use
the data as input for our machine learning approach. We first
reduce the amount of noise in the data, then we divide the time-
series data into smaller sections or frames, extract our features,
standardize the data, and perform dimensionality reduction.

A. Noise Reduction

Our data sets include baseline or normal activity, crack
or piping events, and many spurious noise events commonly
found in passive seismic data. We explore wavelet denoising
to help make a distinction between noise in the data and true
anomalous events. Since the 1990s, wavelets have provided
a powerful tool for denoising a variety of signals [20]. De-
composing a signal using a discrete wavelet transform yields
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a set of wavelet coefficients that correspond to high frequency
subband details within the signal. Small wavelet coefficients
pertain to relatively minor details within the signal that are
often created by noise. By setting all wavelet coefficients
below some threshold to zero and then reversing the wavelet
transform, we eliminate noise in our data [21].

We use a maximal overlap discrete wavelet transform
(MODWT), which differs from the discrete wavelet transform
in that it is highly redundant and nonorthogonal. This means
that, among other advantages, the MODWT is well defined
for all sample sizes, wavelet coefficients are not influenced by
circular shifting of the input signal, and wavelet coefficients at
each level align with the original signal [22]. We test various
transform levels of the MODWT denoising process with Haar,
Daubechies 2 (db2), Symlets 6 (sym6), Coiflets 4 (coif4), and
Fejer-Korovkin 8 (fk8) wavelets and evaluate the efficacy of
each in our results section.

B. Spectral Framing

We use the entire 4,140 seconds of crack-box time-series
data (2,070,000 samples) and 2,460 seconds (1,230,000 sam-
ples) of the piping data set, both from a single sensor collected
at 500Hz. We divide the data into frames (or segments) using
spectral frame decomposition with MATLAB and the open-
source MIRToolbox [23]. We have experimented with various
frame-sizes and found similar performance for these data sets
using 1, 2, 3, 5, and 10-second frames. Figure 4 illustrates
a zoomed in portion of the segmented crack-box data using
3-second frames (the frame size used throughout this paper).

Fig. 4: A zoomed-in portion of the crack-box time series data showing
the segments of a 3-second spectral frame decomposition.

C. Feature Extraction

The features selected to best represent our passive seis-
mic data events are those commonly found in audio signal
processing. We leverage our previous work to reduce the
choices and extract the nine temporal, statistical, and spectral
features described in [6] from each of the 3-second frames of
data. These features are zerocross, centroid, spread, root mean
square, rolloff, flatness, kurtosis, irregularity, and skewness.

D. Standardization

In our experiments, we used Equation 1 to standardize the
feature values. Data standardization is common practice for
transforming each of the feature vectors to have a zero mean
(μ) and unit standard deviation (σ).

X ′ =
X − μ

σ
(1)

E. Dimensionality Reduction

In previous research, we used all nine extracted features
with unsupervised clustering [5] and two-class support vector
machines [6]. We further investigated using the top selected
features from the ReliefF algorithm [24] with one-class support
vector machines [6]. In this experiment, we applied the ReliefF
method after the wavelet denoising and found that the top
resultant features for these data sets are zerocross, spread, and
the root mean square of the energy (described in Table I).

TABLE I: Top features of the nine spectral features extracted from
each 3-second frame used in our anomaly detection algorithm.

Feature Description
Zerocross
(ZC)

A temporal feature which is a count of the
number of times the spectral signal crosses the
zero axis (changes sign).

Spread
(SP)

A spectral feature that represents the standard
deviation of the distribution.

Root Mean
Square
(RMS)

A temporal feature that represents the global
energy (loudness) of the signal; root average
of the square of the amplitude.

The top resultant features are not surprising given that
the seismic anomalies that we seek to detect (e.g. cracking)
are relatively violent in comparison to normal circumstances.
Therefore, as the sensors are being jarred and generally ex-
periencing more movement, we intuitively expect the signal
to change sign more rapidly and be more peaked than usual.
Furthermore, the fact that these events correspond to changes
in the earthen structure that are not subsequently reversed
suggests that there might be less symmetry in the anomalous
portions of our signal data.

V. ANOMALY DETECTION

One advantage of using a multivariate Gaussian approach
is the ability to take all of the feature values into account
at once instead of considering them one at a time and then
combining the results [25]. The multivariate Gaussian may
catch anomalies that a single system won’t, especially if the
features have some correlation with each other (i.e., the feature
values have some dependencies and, thus, we should model
p(x) using the entire feature set). The multivariate Gaussian
approach also works well when the number of normal data
observations is not terribly skewed, which is true in our
application.

Once the features are selected and preprocessed, we use
the first 30% of the data to train our model (Xtrn) and
the remaining 70% for validation (Xval). We calculate the
parameters of the Gaussian distribution of the training data
set (the mean (μ) and the variance (σ2) for Xtrn). We then
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compute the probability density function, p(x), using the μ
and σ2 calculated for Xtrn. Then, p(x) is used to predict the
probability that the next data observation is normal (as opposed
to anomalous). Using a threshold value for ε found during the
cross validation step, we test new observations to determine
their probability of belonging to the normal class. In other
words, using Equation 2, if

p(xnew) < ε, (2)

then the new observation is a potential anomaly.

VI. RESULTS AND ANALYSIS

Using the multivariate Gaussian approach, Haar wavelet
denoising, and 3-second frames, we achieved up to a 97.3%
overall accuracy with the top features selected by the ReliefF
algorithm for both of our data sets. After the preprocessing
and denoising of the data, the model was trained and validated
using the passive seismic data as described in Section III.

A. Crack-Box Data Results

The contour plot in Figure 5 shows the results with the data
observations as black dots and the anomalies encircled in red.
The lines of the contour represent the estimated probability
that an observation at that level is normal.

Fig. 5: Contour of the potential anomalies in our training data. Higher
values represent normal data and values that fall below the threshold
are considered anomalous. The anomalies selected with threshold ε =
0.0979 are located outside the dark blue line (second to outermost).

Figure 6 is a plot of the resultant probabilities (using
ε = 0.0979) where values below ε are considered anomalous.
Using known ground truth labels, we analyze the results and
provide statistics to measure the performance of our anomaly
detection approach. The results from our experiment with a
3-second frame size achieved a 97.3% overall accuracy and
had relatively few misses (1.3%) and false alarms (1.3%).

We repeat our experiments to confirm that the multivariate
Gaussian technique is effective with various training sizes. Our
results are in Table II. The overall accuracy remains above 96%
while maintaining a relatively low number of false negatives
(< 1.6%). Notice that the performance begins to degrade as
we move past using the first 30% to train due to the presence
of more anomalous observations in the training data.

Fig. 6: Probabilities calculated using training data show values below
ε = 0.0979 are potential anomalies in the crack-box data.

TABLE II: Results of repeated runs of our data-driven workflow
using a varied training percentage. The training percentages represent
the first % of the time-series data.

Training % Accuracy TP TN FP FN
20% 97.1 10.7 86.4 1.4 1.4

25% 97.2 4.6 92.6 1.2 1.6

30% 97.3 2.7 94.6 1.3 1.3
35% 97.0 3.1 93.9 1.8 1.2

40% 96.0 3.9 92.2 3.1 0.8

B. Piping Data Results

To further validate our approach, we applied the multivari-
ate Gaussian technique to a second data set with a different
type of internal erosion event (piping). The contour plot in
Figure 7 again shows the results with the data observations as
black dots and the anomalies encircled in red. The lines of the
contour represent the estimated probability that an observation
at that level is normal.

Fig. 7: Contour of the potential anomalies in our training data. Higher
values represent normal data and values that fall below the threshold
are considered anomalous. The anomalies selected using ε = 0.0113
are located on or outside the dark blue line (outermost).
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Figure 8 is a plot of the resultant probabilities where values
below ε = 0.0113 are considered anomalous. The results from
our piping experiments using a 3-second frame size reveal an
overall accuracy of 97.2%, a low number of misses (0.3%),
and few false alarms (2.4%).

Fig. 8: Resultant probabilities calculated using training data show
values below ε = 0.0113 are potential anomalies in the piping data.

C. Validation Metrics

We continue our validation using several metrics commonly
used with classification experiments, which are percentages
representing ratios between the statistics found in the confusion
matrix. These values are given and described in Table III.

TABLE III: Evaluation metrics typically used for the validation of
machine-learning classifiers with results from our experiments with a
3-second frame size and Level 3 Haar wavelet denoising.

Metric Description Crack
Box

Piping

Accuracy Correctly classified events. 97.3% 97.2%

Specificity Proportion of anomalous
events correctly identified.

98.6% 84.1%

Precision Proportion of events classi-
fied as normal that were truly
normal.

67.5% 97.2%

Recall Proportion of normal events
correctly identified.

67.5% 99.6%

F1-score Harmonic mean of precision
and recall.

67.5% 98.4%

Both data sets achieved a high overall accuracy of over 97%
with the piping data set producing a high F1-score of 98.4%.
We hypothesize the increase in precision and recall between
the crack-box data and the piping data could be due to the
large amount of anomalous events present in the validation
set of the crack-box data. The specificity of 98.6% for the
crack-box data indicates that the model correctly identifies
anomalous circumstances in the overwhelming majority of
cases. Furthermore, a comparatively low recall, in this appli-
cation, is better than decreasing specificity because it is safer
to have the system trigger a false alarm than to accidentally
ignore an internal erosion event. This trade-off between recall
and specificity is elucidated in the ROC curves, which are

discussed in detail in the next section. The ROC curve shows
the relationship between the false positive rate on the x-
axis (1 - specificity) versus true positive rate on the y-axis
(sensitivity or recall), with values in the upper left hand corner
(0,1) denoting a perfect classification. Unlike other common
statistics that show results using only one threshold, the ROC
curve shows performance using all possible thresholds.

D. Wavelet Analysis

We now provide results of our wavelet analysis using
the crack-box data set; we observed similar results using the
piping data sets. As shown in Figure 9 and Table IV, we
tested the MODWT denoising process with several analyzing
wavelets. Previous work showed we could separate normal
from anomalous data observations with 86.5% accuracy using
a one-class support vector machine and 3-second frames [6].
With our new method, the accuracy increased by over 9.8%.
Adding the Haar wavelet denoising, we see an additional
increased accuracy from 96.3% to 97.3% and an improvement
for both true and false classification rates. Denoising using
the other wavelets decreased the accuracy, presumably because
some meaningful signal data was discarded with the noise.

Fig. 9: ROC curves for the best performing level for a given wavelet
(reference Table III). The Haar wavelet produces the highest overall
result and is selected for our anomaly detection scheme.

TABLE IV: Performance impact of wavelet denoising.

Wavelet Best
Level

Accuracy TP TN FP FN

Haar 3 97.3 2.7 94.6 1.3 1.3
db2 3 95.6 2.9 92.7 1.1 3.3

sym6 1 86.7 2.3 84.4 1.8 11.6

coif4 1 87.7 2.0 85.7 2.1 10.2

fk8 1 92.5 2.2 90.3 1.9 5.7

None - 96.3 2.0 94.3 2.1 1.7

We also tested various levels of denoising with each
wavelet. These results are shown for the Haar wavelet in Table
V. We see that level 3, which corresponds to a MODWT of
a signal down to scale 23, yields the greatest performance
increase. At levels 4-7, we again hypothesize that meaningful
signal data was erroneously discarded as noise. These results
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suggest that there are potential benefits to wavelet transform
denoising in this application, and that one must be careful in
selecting the level of denoising.

TABLE V: Performance impact of various levels of Haar wavelet
transform denoising.

Level Accuracy TP TN FP FN
1 93.9 3.1 90.8 0.9 5.2

2 96.8 2.5 94.3 1.6 1.7

3 97.3 2.7 94.6 1.3 1.3
4 54.5 2.9 51.6 1.1 44.4

5 16.7 4.0 12.7 0.0 83.2

6 67.5 3.1 64.4 0.9 31.5

7 32.4 3.1 29.3 0.9 66.7

VII. CONCLUSIONS AND FUTURE WORK

We present a step towards continuous real-time EDL health
monitoring using an anomaly detection approach. Our exper-
iments with passive seismic data, collected from two differ-
ent laboratory earth embankments, show promising results.
We applied wavelet transform denoising techniques, extracted
spectral features to represent our data, and used a multivariate
Gaussian anomaly detection technique. Results indicate the
ability to differentiate between normal and anomalous data
observations with up to 97.3% accuracy. We plan to continue
our research towards a generalized workflow that can be used
to detect anomalous activity with any type of EDL. To fully
evaluate our approach, we will experiment with additional test
and real-world data. We have passive seismic data from the
IJkdijk full-scale test embankment located in the Netherlands
that was constructed to study seepage and internal erosion [18]
[26]. We have also been provided seepage and erosion data
from the real-world Colijnsplaat levee in the Netherlands [27]
collected by a team of geoscientists. It is our goal to develop a
system for the identification of internal erosion events in aging
EDLs early enough to prevent or mitigate catastrophic failures.
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